Advertisement

The Dynamics of Disruptions

  • Luigi Coppola
Chapter

Abstract

The timely identification of ground deformation at failure in areas at high hydrogeological risk has as a key prerequisite the definition of the distinctive character of the type of disruption that may develop on the slope. For this purpose, prior to any instrumental survey, the area subjected to potential hydrogeological instability should be identified and circumscribed by using the traditional geological-structural and geomorphological surveys. This distinction is very important since the dynamics of instability assume different behaviour in relation to the causes of activation or reactivation of the landslide. The characteristics will therefore be sought for the identification of several types of landslides belonging to the large group of hydrogeological instabilities in predominantly cohesive soils in order to simplify and make immediate the identification of areas at risk.

References

  1. Aguilera, N., Gallardo, F., & Chávez, Manrique A. (2002). Geología del Parque Nacional Calilegua, Provincia de Juiuy. Acta XV Congreso Geológico Boliviano. Bolivia: Santa Cruz.Google Scholar
  2. Boenzi, F., Di Gennaro, M. A., & Pennetta, L. (1978). I terrazzi della valle del Basento (Basilicata). Rivista Geografica Italiana, LXXXV(4), 396–418.Google Scholar
  3. Bromhead, E. N., & Dixon, N. (1984). Pore water pressure observations in the coastal clay cliffs of the Isle of Sheppey, England. In Proceedings of the 4th International Symposium on Landslides, Toronto, Vol. 1, pp. 385–390.Google Scholar
  4. Cantalamessa, G., Centamore, E., Colalongo, M. L., Micarelli, A., Nanni, T., Pasini, G., et al. (1986). Il Plio-Pleistocene nelle Marche. In La Geologia delle Marche, a cura di Centamore E. e Deiana G., Studi Geologici Camerti Numero speciale.Google Scholar
  5. Carter, N. L., & Ave Lallemant, H. G. (1970). High temperature flow of Dunite and Peridotite. Géological Society of América Bulletin, 81, 2181–2202.CrossRefGoogle Scholar
  6. Casagrande, A. (1949). Soil mechanism in the design and construction of Logan Airport. Journal Boston Society Civil Engineering, 2, 36.Google Scholar
  7. Cellini, V. (1973a). Estudio geológico en la zona de Saladillo de la Brea, Sierra de Santa Bárbara Norte y El Oculto (Provincia de Jujuy). Informe de YPF inédito, en Hoja Geológica 2366-IV Ciudad del Libertador General San Martín, Boletín SEGEMAR 274.1999. Argentina.Google Scholar
  8. Cellini, V. (1973b). Estructura y estratigrafia del area El Naranjo – El Mirador (Provincia de Salta). Informe de YPF inédito, en Hoja Geológica 2366-IV Ciudad del Libertador General San Martín, Boletín SEGEMAR 274, Argentina, 1999.Google Scholar
  9. Costantini, A., Lazzarotto, A., Maccantelli, M., & Sandrelli, F. (1992). Ligurian units in the Monti della Gherardesca area (Southern Tuscany). Bollettino della Societa Geologica Italiana, 110, 849–855.Google Scholar
  10. Donath, F. A. (1963). Strength variation and deformational behavior in anisotropic rock. State of stress in the Earth’s crust. Amsterdam: Elsevier.Google Scholar
  11. Fenelli, G. B., & Picarelli, L. (1990). The pore pressure field built up in a rapidly eroded soil mass. Canadian Geotechnical Journal, XXVII(3), 387–392.CrossRefGoogle Scholar
  12. Gebhard, J. A., Giudici, A. R., & Oliver Gascón, J. O. (1974). Geología de la Comarca entre el río Juramento y arroyo Las Tortugas, provincia de Salta y Jujuy. República Argentina. Revista de la Asociación Geológica Argentina, 19(5), 359–375.Google Scholar
  13. Griggs, D. T. (1936). Deformation of rocks under confining pressures. The Journal of Geology, 44, 541–577.CrossRefGoogle Scholar
  14. Handin, J., & Hager, R. V. (1957). Experimental deformation of sedimentary rocks under confining pressure: tests at room temperature on dry samples. Bulletin American Association Petroleum Geology, 41(1), 1–50.Google Scholar
  15. Handin, J., & Hager, R. V. (1958). Experimental deformation of sedimentary rocks under confining pressure: tests at high temperature. Bulletin American Association of Petroleum Geologists, 42(12), 2892–2934.Google Scholar
  16. Heard, H. C. (1960). Transition from brittle to ductile flow in solenhofen limestones as a function of temperature confining pressure, and interstitial fluid. Geological Society of America Memoirs, 79, 193–226.CrossRefGoogle Scholar
  17. Hendron, A. J. (1969). Mechanical properties of rock. Rock mechanics (pp. 21–53). New York: Wiley.Google Scholar
  18. Hubber, M. K. (1961). Mechanical basis for certain familiar geologic structures. Bulletin Geological Society of America, 62, 355–372.CrossRefGoogle Scholar
  19. Mattauer, M. (1973). Les déformations des matériaux de l’écorce terrestre (p. 493). Paris: Hermann éd.Google Scholar
  20. Ogniben, L. (1969). Schema introduttivo alla geologia del confine calabro-lucano. Memorie della Società Geologica Italiana, 8, 2 tavv. a colori, Pisa.Google Scholar
  21. Picarelli, L., & Urciuoli, G. (1993). Effetti dell’erosione in argilliti di alta plasticità, Rivista Italiana di Geotecnica, Anno XXVII, no. 1, gennaio-marzo 1993, Napoli: Edizioni Scientifiche Italiane.Google Scholar
  22. Ricchetti, G., & Scandone, P. (1979). Inquadramento geologico regionale della Fossa Bradanica. Geologia Applicata e Idrogeologia, XIV, III (Bari).Google Scholar
  23. Scandone, P. (1972). Studi di geologia lucana: Carta dei terreni della serie calcareo-silico-marnosa e note illustrative. Bollettino della Società dei naturalisti in Napoli, 81, 225–300.Google Scholar
  24. Skempton, A. W., & Petley, D. L. (1967). The strength alone discontinuities in stiff clays. Atti della Geotechnical Conference, Oslo, Vol. 2, pp. 29–46.Google Scholar
  25. Terzaghi, K. (1936). Stability of slopes of natural clay. In Proceedings of the International Conference on Soil Mechanics and Foundation, Cambridge, Mass., Vol. I, pp. 161–165.Google Scholar
  26. Torstensson, A. B. (1978). The pore pressure probe. Nordiske Geotekniske Mote, Oslo. Paper 3.Google Scholar
  27. Trevisan L. (1968). I diversi tipi di alvei fluviali e la loro evoluzione. Accad. Naz. Liucci, Quaterno n° 112, Roma, pp. 531–561.Google Scholar
  28. Varnes, D. J. (1977). Types of slope movements. Transportation Research Board Committee, A2T58, USA.Google Scholar
  29. Varnes, D. J. (1978). Slopes movement type and processes. In R. L. Schuster & R. S. Krizek (Eds.), Landslides: Analysis and control. U.S. Natural Academy of Sciences, Special Report, 176, pp. 11–33.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of BasilicataPotenzaItaly

Personalised recommendations