Recent Developments of Discrete Inequalities for Convex Functions Defined on Linear Spaces with Applications

  • Silvestru Sever DragomirEmail author
Part of the Springer Optimization and Its Applications book series (SOIA, volume 131)


In this paper we survey some recent discrete inequalities for functions defined on convex subsets of general linear spaces. Various refinements and reverses of Jensen’s discrete inequality are presented. The Slater inequality version for these functions is outlined. As applications, we establish several bounds for the mean f-deviation of an n-tuple of vectors as well as for the f-divergence of an n -tuple of vectors given a discrete probability distribution. Examples for the K. Pearson χ2-divergence, theKullback-Leibler divergence, the Jeffreys divergence, the total variation distance and other divergence measures are also provided.


Convex functions on linear spaces Discrete Jensen’s inequality Reverse of Jensen’s inequality Discrete divergence measures f-Divergence measures 


  1. 1.
    Cerone, P., Dragomir, S.S.: A refinement of the Grüss inequality and applications. Tamkang J. Math. 38(1), 37–49 (2007). Preprint RGMIA Res. Rep. Coll. 5(2) (2002). Article 14.
  2. 2.
    Dragomir, S.S.: An improvement of Jensen’s inequality. Bull. Math. Soc. Sci. Math. Roum. 34(82)(4), 291–296 (1990)Google Scholar
  3. 3.
    Dragomir, S.S.: Some refinements of Ky Fan’s inequality. J. Math. Anal. Appl. 163(2), 317–321 (1992)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dragomir, S.S.: Some refinements of Jensen’s inequality. J. Math. Anal. Appl. 168(2), 518–522 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dragomir, S.S.: A further improvement of Jensen’s inequality. Tamkang J. Math. 25(1), 29–36 (1994)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dragomir, S.S.: A new improvement of Jensen’s inequality. Indian J. Pure Appl. Math. 26(10), 959–968 (1995)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dragomir, S.S.: New estimation of the remainder in Taylor’s formula using Grüss’ type inequalities and applications. Math. Inequal. Appl. 2(2), 183–193 (1999)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dragomir, S.S.: On the Ostrowski’s integral inequality for mappings of bounded variation and applications. RGMIA Res. Rep. Coll. 2(1), 63–70 (1999). MathSciNetGoogle Scholar
  9. 9.
    Dragomir, S.S.: An improvement of the remainder estimate in the generalised Taylor’s formula. RGMIA Res. Rep. Coll. 3(1) (2000). Article 1.
  10. 10.
    Dragomir, S.S.: Other inequalities for Csiszár divergence and applications. Preprint, RGMIA Monographs, Victoria University (2000). Google Scholar
  11. 11.
    Dragomir, S.S.: Some inequalities for \(\left (m,M\right ) \)-convex mappings and applications for the Csiszár f -divergence in Information Theory. Math. J. Ibaraki Univ. 33, 35–50 (2001). MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dragomir, S.S.: Some inequalities for two Csiszár divergences and applications. Mat. Bilten (Macedonia) 25, 73–90 (2001). MathSciNetzbMATHGoogle Scholar
  13. 13.
    Dragomir, S.S.: On a reverse of Jessen’s inequality for isotonic linear functionals. J. Inequal. Pure Appl. Math. 2(3) (2001). Article 36Google Scholar
  14. 14.
    Dragomir, S.S.: A Grüss type inequality for isotonic linear functionals and applications. Demonstratio Math. 36(3), 551–562 (2003). Preprint RGMIA Res. Rep. Coll. 5(2002). Supplement, Article 12.
  15. 15.
    Dragomir, S.S.: A converse inequality for the Csiszár Φ-divergence. Tamsui Oxf. J. Math. Sci. 20(1), 35–53 (2004). Preprint in Dragomir, S.S. (ed.) Inequalities for Csiszár f-Divergence in Information Theory, RGMIA Monographs. Victoria University (2000).
  16. 16.
    Dragomir, S.S.: Semi-inner Products and Applications. Nova Science Publishers Inc., New York (2004)zbMATHGoogle Scholar
  17. 17.
    Dragomir, S.S.: Discrete Inequalities of the Cauchy-Bunyakovsky-Schwarz Type. Nova Science Publishers, New York (2004)zbMATHGoogle Scholar
  18. 18.
    Dragomir, S.S.: Bounds for the normalized Jensen functional. Bull. Aust. Math. Soc. 74(3), 471–476 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Dragomir, S.S.: A refinement of Jensen’s inequality with applications for f-divergence measures. Taiwanese J. Math. 14(1), 153–164 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dragomir, S.S.: A new refinement of Jensen’s inequality in linear spaces with applications. Math. Comput. Model. 52(9–10), 1497–1505 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Dragomir, S.S.: Inequalities in terms of the Gâteaux derivatives for convex functions on linear spaces with applications. Bull. Aust. Math. Soc. 83(3), 500–517 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Dragomir, S.S.: A refinement and a divided difference reverse of Jensen’s inequality with applications. Rev. Colomb. Mat. 50(1), 17–39 (2016). Preprint RGMIA Res. Rep. Coll. 14 (2011). Article 74. MathSciNetCrossRefGoogle Scholar
  23. 23.
    Dragomir, S.S.: Some Slater’s type inequalities for convex functions defined on linear spaces and applications. Abstr. Appl. Anal. 2012, 16 pp. (2012). Article ID 168405Google Scholar
  24. 24.
    Dragomir, S.S.: Some reverses of the Jensen inequality with applications. Bull. Aust. Math. Soc. 87(2), 177–194 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Dragomir, S.S.: Reverses of the Jensen inequality in terms of first derivative and applications. Acta Math. Vietnam. 38(3), 429–446 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Dragomir, S.S., Goh, C.J.: A counterpart of Jensen’s discrete inequality for differentiable convex mappings and applications in information theory. Math. Comput. Model. 24(2), 1–11 (1996)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Dragomir, S.S., Goh, C.J.: Some bounds on entropy measures in information theory. Appl. Math. Lett., 10(3), 23–28 (1997)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Dragomir, S.S., Ionescu, N.M.: Some converse of Jensen’s inequality and applications. Rev. Anal. Numér. Théor. Approx. 23(1), 71–78 (1994)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Dragomir, S.S., Pečarić, J., Persson, L.E.: Properties of some functionals related to Jensen’s inequality. Acta Math. Hung. 70(1–2), 129–143 (1996)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Pečarić, J., Dragomir, S.S.: A refinements of Jensen inequality and applications. Studia Univ. Babeş-Bolyai, Math. 24(1), 15–19 (1989)Google Scholar
  31. 31.
    Simić, S.: On a global upper bound for Jensen’s inequality. J. Math. Anal. Appl. 343, 414–419 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Slater, M.S.: A companion inequality to Jensen’s inequality. J. Approx. Theory 32, 160–166 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematics, College of Engineering & ScienceVictoria UniversityMelbourne CityAustralia
  2. 2.DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science & Applied MathematicsUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations