Mismatch Repair-Proficient Hereditary Nonpolyposis Colorectal Cancer

Chapter

Abstract

Approximately 40% of the families meeting the Amsterdam criteria for a diagnosis of hereditary nonpolyposis colorectal cancer lack evidence of heritable defects in the DNA mismatch repair (MMR) system; more specifically, these patients have no germline mutations in the MMR genes and, therefore, no tumor microsatellite instability or loss of immunohistochemical staining of MMR proteins. The proportion of nonpolyposis CRC families without MMR defects further increases when less stringent criteria for hereditary CRC are considered. As has been the case for other hereditary cancer syndromes, the identification of the genes associated with hereditary colorectal cancer would facilitate the molecular diagnosis of the disease and the development of appropriate surveillance guidelines and clinical management protocols for these patients. However, as will be discussed in this chapter, the identification of causal genes has not proven easy.

Keywords

Familial colorectal cancer type X MMR-proficient Hereditary cancer Colorectal cancer predisposition Novel genes 

References

  1. 1.
    Lindor NM, Rabe K, Petersen GM, Haile R, Casey G, Baron J, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA. 2005;293(16):1979–85.CrossRefGoogle Scholar
  2. 2.
    Dominguez-Valentin M, Therkildsen C, Da Silva S, Nilbert M. Familial colorectal cancer type X: genetic profiles and phenotypic features. Mod Pathol. 2014;28(1):30–6.CrossRefGoogle Scholar
  3. 3.
    Llor X, Pons E, Xicola RM, Castells A, Alenda C, Pinol V, et al. Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res. 2005;11(20):7304–10.CrossRefGoogle Scholar
  4. 4.
    Mueller-Koch Y, Vogelsang H, Kopp R, Lohse P, Keller G, Aust D, et al. Hereditary non-polyposis colorectal cancer: clinical and molecular evidence for a new entity of hereditary colorectal cancer. Gut. 2005;54(12):1733–40.CrossRefGoogle Scholar
  5. 5.
    Valle L, Perea J, Carbonell P, Fernandez V, Dotor AM, Benitez J, et al. Clinicopathologic and pedigree differences in amsterdam I-positive hereditary nonpolyposis colorectal cancer families according to tumor microsatellite instability status. J Clin Oncol. 2007;25(7):781–6.CrossRefGoogle Scholar
  6. 6.
    Francisco I, Albuquerque C, Lage P, Belo H, Vitoriano I, Filipe B, et al. Familial colorectal cancer type X syndrome: two distinct molecular entities? Familial Cancer. 2011;10(4):623–31.CrossRefGoogle Scholar
  7. 7.
    Shiovitz S, Copeland WK, Passarelli MN, Burnett-Hartman AN, Grady WM, Potter JD, et al. Characterisation of familial colorectal cancer Type X, Lynch syndrome, and non-familial colorectal cancer. Br J Cancer. 2014;111(3):598–602.CrossRefGoogle Scholar
  8. 8.
    Jass JR. Hereditary non-polyposis colorectal cancer: the rise and fall of a confusing term. World J Gastroenterol. 2006;12(31):4943–50.CrossRefGoogle Scholar
  9. 9.
    Lindor NM. Familial colorectal cancer type X: the other half of hereditary nonpolyposis colon cancer syndrome. Surg Oncol Clin N Am. 2009;18(4):637–45.CrossRefGoogle Scholar
  10. 10.
    Klarskov L, Holck S, Bernstein I, Nilbert M. Hereditary colorectal cancer diagnostics: morphological features of familial colorectal cancer type X versus Lynch syndrome. J Clin Pathol. 2012;65(4):352–6.CrossRefGoogle Scholar
  11. 11.
    Abdel-Rahman WM, Ollikainen M, Kariola R, Jarvinen HJ, Mecklin JP, Nystrom-Lahti M, et al. Comprehensive characterization of HNPCC-related colorectal cancers reveals striking molecular features in families with no germline mismatch repair gene mutations. Oncogene. 2005;24(9):1542–51.CrossRefGoogle Scholar
  12. 12.
    Goel A, Xicola RM, Nguyen TP, Doyle BJ, Sohn VR, Bandipalliam P, et al. Aberrant DNA methylation in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Gastroenterology. 2010;138(5):1854–62.CrossRefGoogle Scholar
  13. 13.
    Therkildsen C, Jonsson G, Dominguez-Valentin M, Nissen A, Rambech E, Halvarsson B, et al. Gain of chromosomal region 20q and loss of 18 discriminates between Lynch syndrome and familial colorectal cancer. Eur J Cancer. 2013;49(6):1226–35.CrossRefGoogle Scholar
  14. 14.
    Ogino S, Kawasaki T, Nosho K, Ohnishi M, Suemoto Y, Kirkner GJ, et al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer. 2008;122(12):2767–73.CrossRefGoogle Scholar
  15. 15.
    Igarashi S, Suzuki H, Niinuma T, Shimizu H, Nojima M, Iwaki H, et al. A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointestinal stromal tumors. Clin Cancer Res. 2010;16(21):5114–23.CrossRefGoogle Scholar
  16. 16.
    Antelo M, Balaguer F, Shia J, Shen Y, Hur K, Moreira L, et al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS One. 2012;7(9):e45357.CrossRefGoogle Scholar
  17. 17.
    Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Chan AT, Schernhammer ES, et al. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst. 2008;100(23):1734–8.CrossRefGoogle Scholar
  18. 18.
    Boland CR. Recent discoveries in the molecular genetics of Lynch syndrome. Familial Cancer. 2016;15(3):395–403.CrossRefGoogle Scholar
  19. 19.
    Ikeda K, Shiraishi K, Eguchi A, Shibata H, Yoshimoto K, Mori T, et al. Long interspersed nucleotide element 1 hypomethylation is associated with poor prognosis of lung adenocarcinoma. Ann Thorac Surg. 2013;96(5):1790–4.CrossRefGoogle Scholar
  20. 20.
    Iwagami S, Baba Y, Watanabe M, Shigaki H, Miyake K, Ishimoto T, et al. LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann Surg. 2013;257(3):449–55.CrossRefGoogle Scholar
  21. 21.
    Shigaki H, Baba Y, Watanabe M, Murata A, Iwagami S, Miyake K, et al. LINE-1 hypomethylation in gastric cancer, detected by bisulfite pyrosequencing, is associated with poor prognosis. Gastric Cancer. 2013;16(4):480–7.CrossRefGoogle Scholar
  22. 22.
    Sanchez-de-Abajo A, de la Hoya M, van Puijenbroek M, Tosar A, Lopez-Asenjo JA, Diaz-Rubio E, et al. Molecular analysis of colorectal cancer tumors from patients with mismatch repair proficient hereditary nonpolyposis colorectal cancer suggests novel carcinogenic pathways. Clin Cancer Res. 2007;13(19):5729–35.CrossRefGoogle Scholar
  23. 23.
    Middeldorp A, van Eijk R, Oosting J, Forte GI, van Puijenbroek M, van Nieuwenhuizen M, et al. Increased frequency of 20q gain and copy-neutral loss of heterozygosity in mismatch repair proficient familial colorectal carcinomas. Int J Cancer. 2012;130(4):837–46.CrossRefGoogle Scholar
  24. 24.
    Bellido F, Pineda M, Sanz-Pamplona R, Navarro M, Nadal M, Lazaro C, et al. Comprehensive molecular characterisation of hereditary non-polyposis colorectal tumours with mismatch repair proficiency. Eur J Cancer. 2014;50(11):1964–72.CrossRefGoogle Scholar
  25. 25.
    Leppert M, Dobbs M, Scambler P, O'Connell P, Nakamura Y, Stauffer D, et al. The gene for familial polyposis coli maps to the long arm of chromosome 5. Science (New York, NY). 1987;238(4832):1411–3.CrossRefGoogle Scholar
  26. 26.
    Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science (New York, NY). 1991;253(5020):665–9.CrossRefGoogle Scholar
  27. 27.
    Wiesner GL, Daley D, Lewis S, Ticknor C, Platzer P, Lutterbaugh J, et al. A subset of familial colorectal neoplasia kindreds linked to chromosome 9q22.2-31.2. Proc Natl Acad Sci U S A. 2003;100(22):12961–5.CrossRefGoogle Scholar
  28. 28.
    Kemp ZE, Carvajal-Carmona LG, Barclay E, Gorman M, Martin L, Wood W, et al. Evidence of linkage to chromosome 9q22.33 in colorectal cancer kindreds from the United Kingdom. Cancer Res. 2006;66(10):5003–6.CrossRefGoogle Scholar
  29. 29.
    Skoglund J, Djureinovic T, Zhou XL, Vandrovcova J, Renkonen E, Iselius L, et al. Linkage analysis in a large Swedish family supports the presence of a susceptibility locus for adenoma and colorectal cancer on chromosome 9q22.32-31.1. J Med Genet. 2006;43(2):e7.CrossRefGoogle Scholar
  30. 30.
    Neklason DW, Kerber RA, Nilson DB, Anton-Culver H, Schwartz AG, Griffin CA, et al. Common familial colorectal cancer linked to chromosome 7q31: a genome-wide analysis. Cancer Res. 2008;68(21):8993–7.CrossRefGoogle Scholar
  31. 31.
    Papaemmanuil E, Carvajal-Carmona L, Sellick GS, Kemp Z, Webb E, Spain S, et al. Deciphering the genetics of hereditary non-syndromic colorectal cancer. Eur J Hum Genet. 2008;16(12):1477–86.CrossRefGoogle Scholar
  32. 32.
    Picelli S, Vandrovcova J, Jones S, Djureinovic T, Skoglund J, Zhou XL, et al. Genome-wide linkage scan for colorectal cancer susceptibility genes supports linkage to chromosome 3q. BMC Cancer. 2008;8:87.CrossRefGoogle Scholar
  33. 33.
    Gray-McGuire C, Guda K, Adrianto I, Lin CP, Natale L, Potter JD, et al. Confirmation of linkage to and localization of familial colon cancer risk haplotype on chromosome 9q22. Cancer Res. 2010;70(13):5409–18.CrossRefGoogle Scholar
  34. 34.
    Neklason DW, Tuohy TM, Stevens J, Otterud B, Baird L, Kerber RA, et al. Colorectal adenomas and cancer link to chromosome 13q22.1-13q31.3 in a large family with excess colorectal cancer. J Med Genet. 2010;47(10):692–9.CrossRefGoogle Scholar
  35. 35.
    Saunders IW, Ross J, Macrae F, Young GP, Blanco I, Brohede J, et al. Evidence of linkage to chromosomes 10p15.3-p15.1, 14q24.3-q31.1 and 9q33.3-q34.3 in non-syndromic colorectal cancer families. Eur J Hum Genet. 2012;20(1):91–6.CrossRefGoogle Scholar
  36. 36.
    Kontham V, von Holst S, Lindblom A. Linkage analysis in familial non-Lynch syndrome colorectal cancer families from Sweden. PLoS One. 2013;8(12):e83936.CrossRefGoogle Scholar
  37. 37.
    Teerlink C, Nelson Q, Burt R, Cannon-Albright L. Significant evidence of linkage for a gene predisposing to colorectal cancer and multiple primary cancers on 22q11. Clin Transl Gastroenterol. 2014;5:e50.CrossRefGoogle Scholar
  38. 38.
    Rudkjobing LA, Eiberg H, Mikkelsen HB, Binderup ML, Bisgaard ML. The analysis of a large Danish family supports the presence of a susceptibility locus for adenoma and colorectal cancer on chromosome 11q24. Familial Cancer. 2015;14(3):393–400.CrossRefGoogle Scholar
  39. 39.
    Sanchez-Tome E, Rivera B, Perea J, Pita G, Rueda D, Mercadillo F, et al. Genome-wide linkage analysis and tumoral characterization reveal heterogeneity in familial colorectal cancer type X. J Gastroenterol. 2015;50(6):657–66.CrossRefGoogle Scholar
  40. 40.
    Valle L. Recent discoveries in the genetics of familial colorectal cancer and polyposis. Clin Gastroenterol Hepatol. 2017;15(3):461–462.CrossRefGoogle Scholar
  41. 41.
    Nieminen TT, O'Donohue MF, Wu Y, Lohi H, Scherer SW, Paterson AD, et al. Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology. 2014;147(3):595–8 e5.CrossRefGoogle Scholar
  42. 42.
    Broderick P, Dobbins SE, Chubb D, Kinnersley B, Dunlop MG, Tomlinson I, et al. Validation of recently proposed colorectal cancer susceptibility gene variants in an analysis of families and patients-a systematic review. Gastroenterology. 2016;152(1):75–7 e4.CrossRefGoogle Scholar
  43. 43.
    Segui N, Mina LB, Lazaro C, Sanz-Pamplona R, Pons T, Navarro M, et al. Germline mutations in FAN1 cause hereditary colorectal cancer by impairing DNA repair. Gastroenterology. 2015;149(3):563–6.CrossRefGoogle Scholar
  44. 44.
    Smith AL, Alirezaie N, Connor A, Chan-Seng-Yue M, Grant R, Selander I, et al. Candidate DNA repair susceptibility genes identified by exome sequencing in high-risk pancreatic cancer. Cancer Lett. 2016;370(2):302–12.CrossRefGoogle Scholar
  45. 45.
    de Voer RM, Geurts van Kessel A, Weren RD, Ligtenberg MJ, Smeets D, Fu L, et al. Germline mutations in the spindle assembly checkpoint genes BUB1 and BUB3 are risk factors for colorectal cancer. Gastroenterology. 2013;145(3):544–7.CrossRefGoogle Scholar
  46. 46.
    Schulz E, Klampfl P, Holzapfel S, Janecke AR, Ulz P, Renner W, et al. Germline variants in the SEMA4A gene predispose to familial colorectal cancer type X. Nat Commun. 2004;5:5191.CrossRefGoogle Scholar
  47. 47.
    Kinnersley B, Chubb D, Dobbins SE, Frampton M, Buch S, Timofeeva MN, et al. Correspondence: SEMA4A variation and risk of colorectal cancer. Nat Commun. 2016;7:10611.CrossRefGoogle Scholar
  48. 48.
    Bellido F, Sowada N, Mur P, Lázaro C, Pons T, Valdés-Mas R, et al. Association Between Germline Mutations in BRF1, a Subunit of the RNA Polymerase III Transcription Complex, and Hereditary Colorectal Cancer. Gastroenterology. 2018;154(1):181–194. doi: 10.1053/j.gastro.2017.09.005 CrossRefPubMedGoogle Scholar
  49. 49.
    Venkatachalam R, Ligtenberg MJ, Hoogerbrugge N, Schackert HK, Gorgens H, Hahn MM, et al. Germline epigenetic silencing of the tumor suppressor gene PTPRJ in early-onset familial colorectal cancer. Gastroenterology. 2010;139(6):2221–4.CrossRefGoogle Scholar
  50. 50.
    de Voer RM, Hahn MM, Weren RD, Mensenkamp AR, Gilissen C, van Zelst-Stams WA, et al. Identification of novel candidate genes for early-onset colorectal cancer susceptibility. PLoS Genet. 2016;12(2):e1005880.CrossRefGoogle Scholar
  51. 51.
    Spier I, Holzapfel S, Altmuller J, Zhao B, Horpaopan S, Vogt S, et al. Frequency and phenotypic spectrum of germline mutations in POLE and seven other polymerase genes in 266 patients with colorectal adenomas and carcinomas. Int J Cancer. 2015;137(2):320–31.CrossRefGoogle Scholar
  52. 52.
    Villacis RA, Abreu FB, Miranda PM, Domingues MA, Carraro DM, Santos EM, et al. ROBO1 deletion as a novel germline alteration in breast and colorectal cancer patients. Tumour Biol. 2016;37(3):3145–53.CrossRefGoogle Scholar
  53. 53.
    Wei C, Peng B, Han Y, Chen WV, Rother J, Tomlinson GE, et al. Mutations of HNRNPA0 and WIF1 predispose members of a large family to multiple cancers. Familial Cancer. 2015;14(2):297–306.CrossRefGoogle Scholar
  54. 54.
    Gylfe AE, Katainen R, Kondelin J, Tanskanen T, Cajuso T, Hanninen U, et al. Eleven candidate susceptibility genes for common familial colorectal cancer. PLoS Genet. 2013;9(10):e1003876.CrossRefGoogle Scholar
  55. 55.
    Esteban-Jurado C, Vila-Casadesus M, Garre P, Lozano JJ, Pristoupilova A, Beltran S, et al. Whole-exome sequencing identifies rare pathogenic variants in new predisposition genes for familial colorectal cancer. Genet Med. 2014;17(2):131–42.CrossRefGoogle Scholar
  56. 56.
    Tanskanen T, Gylfe AE, Katainen R, Taipale M, Renkonen-Sinisalo L, Jarvinen H, et al. Systematic search for rare variants in Finnish early-onset colorectal cancer patients. Cancer Genet. 2015;208(1–2):35–40.CrossRefGoogle Scholar
  57. 57.
    Esteban-Jurado C, Franch-Exposito S, Munoz J, Ocana T, Carballal S, Lopez-Ceron M, et al. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer. Eur J Hum Genet. 2016;24(10):1501–5.CrossRefGoogle Scholar
  58. 58.
    Garre P, Martin L, Sanz J, Romero A, Tosar A, Bando I, et al. BRCA2 gene: a candidate for clinical testing in familial colorectal cancer type X. Clin Genet. 2015;87(6):582–7.CrossRefGoogle Scholar
  59. 59.
    Yurgelun MB, Allen B, Kaldate RR, Bowles KR, Judkins T, Kaushik P, et al. Identification of a variety of mutations in cancer predisposition genes in patients with suspected Lynch syndrome. Gastroenterology. 2015;149(3):604–13 e20.CrossRefGoogle Scholar
  60. 60.
    DeRycke MS, Gunawardena SR, Middha S, Asmann YW, Schaid DJ, McDonnell SK, et al. Identification of novel variants in colorectal cancer families by high-throughput exome sequencing. Cancer Epidemiol Biomark Prev. 2013;22(7):1239–51.CrossRefGoogle Scholar
  61. 61.
    Smith CG, Naven M, Harris R, Colley J, West H, Li N, et al. Exome resequencing identifies potential tumor-suppressor genes that predispose to colorectal cancer. Hum Mutat. 2013;34(7):1026–34.CrossRefGoogle Scholar
  62. 62.
    Chubb D, Broderick P, Dobbins SE, Frampton M, Kinnersley B, Penegar S, et al. Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. Nat Commun. 2016;7:11883.CrossRefGoogle Scholar
  63. 63.
    Sill H, Schulz E, Steinke-Lange V, Boland CR. Correspondence: reply to 'SEMA4A variation and risk of colorectal cancer'. Nat Commun. 2016;7:10695.CrossRefGoogle Scholar
  64. 64.
    Spier I, Kerick M, Drichel D, Horpaopan S, Altmuller J, Laner A, et al. Exome sequencing identifies potential novel candidate genes in patients with unexplained colorectal adenomatous polyposis. Familial Cancer. 2016;15(2):281–8.CrossRefGoogle Scholar
  65. 65.
    Garre P, Briceno V, Xicola RM, Doyle BJ, de la Hoya M, Sanz J, et al. Analysis of the oxidative damage repair genes NUDT1, OGG1, and MUTYH in patients from mismatch repair proficient HNPCC families (MSS-HNPCC). Clin Cancer Res. 2011;17(7):1701–12.CrossRefGoogle Scholar
  66. 66.
    Dallosso AR, Dolwani S, Jones N, Jones S, Colley J, Maynard J, et al. Inherited predisposition to colorectal adenomas caused by multiple rare alleles of MUTYH but not OGG1, NUDT1, NTH1 or NEIL 1, 2 or 3. Gut. 2008;57(9):1252–5.CrossRefGoogle Scholar
  67. 67.
    Kinnersley B, Buch S, Castellvi-Bel S, Farrington SM, Forsti A, Hampe J, et al. Re: role of the oxidative DNA damage repair gene OGG1 in colorectal tumorigenesis. J Natl Cancer Inst. 2014;106(5):dju086.Google Scholar
  68. 68.
    Lubbe SJ, Pittman AM, Matijssen C, Twiss P, Olver B, Lloyd A, et al. Evaluation of germline BMP4 mutation as a cause of colorectal cancer. Hum Mutat. 2011;32(1):E1928–38.CrossRefGoogle Scholar
  69. 69.
    Zogopoulos G, Jorgensen C, Bacani J, Montpetit A, Lepage P, Ferretti V, et al. Germline EPHB2 receptor variants in familial colorectal cancer. PLoS One. 2008;3(8):e2885.CrossRefGoogle Scholar
  70. 70.
    Coissieux MM, Tomsic J, Castets M, Hampel H, Tuupanen S, Andrieu N, et al. Variants in the netrin-1 receptor UNC5C prevent apoptosis and increase risk of familial colorectal cancer. Gastroenterology. 2011;141(6):2039–46.CrossRefGoogle Scholar
  71. 71.
    Guda K, Moinova H, He J, Jamison O, Ravi L, Natale L, et al. Inactivating germ-line and somatic mutations in polypeptide N-acetylgalactosaminyltransferase 12 in human colon cancers. Proc Natl Acad Sci U S A. 2009;106(31):12921–5.CrossRefGoogle Scholar
  72. 72.
    Clarke E, Green RC, Green JS, Mahoney K, Parfrey PS, Younghusband HB, et al. Inherited deleterious variants in GALNT12 are associated with CRC susceptibility. Hum Mutat. 2012;33(7):1056–8.CrossRefGoogle Scholar
  73. 73.
    Mur P, Elena SC, Ausso S, Aiza G, Rafael VM, Pineda M, et al. Scarce evidence of the causal role of germline mutations in UNC5C in hereditary colorectal cancer and polyposis. Sci Rep. 2016;6:20697.CrossRefGoogle Scholar
  74. 74.
    Segui N, Pineda M, Navarro M, Lazaro C, Brunet J, Infante M, et al. GALNT12 is not a major contributor of familial colorectal cancer type X. Hum Mutat. 2014;35(1):50–2.CrossRefGoogle Scholar
  75. 75.
    Pearlman R, Frankel WL, Swanson B, Zhao W, Yilmaz A, Miller K, et al. Prevalence and Spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 2017;3(4):464–71.CrossRefGoogle Scholar
  76. 76.
    Yurgelun MB, Masciari S, Joshi VA, Mercado RC, Lindor NM, Gallinger S, et al. Germline TP53 mutations in patients with early-onset colorectal cancer in the colon cancer family registry. JAMA Oncol. 2015;1(2):214–21.CrossRefGoogle Scholar
  77. 77.
    Wang L, Baudhuin LM, Boardman LA, Steenblock KJ, Petersen GM, Halling KC, et al. MYH mutations in patients with attenuated and classic polyposis and with young-onset colorectal cancer without polyps. Gastroenterology. 2004;127(1):9–16.CrossRefGoogle Scholar
  78. 78.
    Knopperts AP, Nielsen M, Niessen RC, Tops CM, Jorritsma B, Varkevisser J, et al. Contribution of bi-allelic germline MUTYH mutations to early-onset and familial colorectal cancer and to low number of adenomatous polyps: case-series and literature review. Familial Cancer. 2013;12(1):43–50.CrossRefGoogle Scholar
  79. 79.
    Castillejo A, Vargas G, Castillejo MI, Navarro M, Barbera VM, Gonzalez S, et al. Prevalence of germline MUTYH mutations among Lynch-like syndrome patients. Eur J Cancer. 2014;50(13):2241–50.CrossRefGoogle Scholar
  80. 80.
    Segui N, Navarro M, Pineda M, Koger N, Bellido F, Gonzalez S, et al. Exome sequencing identifies MUTYH mutations in a family with colorectal cancer and an atypical phenotype. Gut. 2015;64(2):355–6.CrossRefGoogle Scholar
  81. 81.
    Valle L, Hernandez-Illan E, Bellido F, Aiza G, Castillejo A, Castillejo MI, et al. New insights into POLE and POLD1 germline mutations in familial colorectal cancer and polyposis. Hum Mol Genet. 2014;23(13):3506–12.CrossRefGoogle Scholar
  82. 82.
    Bellido F, Pineda M, Aiza G, Valdes-Mas R, Navarro M, Puente DA, et al. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance. Genet Med. 2016;18(4):325–32.CrossRefGoogle Scholar
  83. 83.
    Dobbins SE, Broderick P, Chubb D, Kinnersley B, Sherborne AL, Houlston RS. Undefined familial colorectal cancer and the role of pleiotropism in cancer susceptibility genes. Familial Cancer. 2016;15(4):593–9.CrossRefGoogle Scholar
  84. 84.
    Yurgelun MB, Kulke MH, Fuchs CS, Allen BA, Uno H, Hornick JL, et al. Cancer susceptibility gene mutations in individuals with colorectal cancer. J Clin Oncol. 2017;35(10):1086–95.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hereditary Cancer ProgramCatalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de LlobregatBarcelonaSpain

Personalised recommendations