• Mark A. S. McMenamin
Part of the Springer Geology book series (SPRINGERGEOL)


The primary feathers on the hind limbs of Microraptor give us an important clue about the nature of the ‘feather scleritome’. The Microraptor morphogenetic field hosts four curved projections representing the animal’s limbs. This is the case for all tetrapods. Like the bot fly larva, but in reverse, the extra sclerites/enations (maggot spines versus primary feather primordia, respectively) are on the trailing edge of a transverse bulge of the body rather than the leading edge of the bulge (anterior edge larval segment versus posterior edge of limb, respectively). Birds surely passed through an ancestral stage (Tetrapteryx) that developed the hind limbs as wing-like structures and, in accord with Goethe’s Law of Compensation, feathering on the hind limbs was reduced as the lineage relied more and more on their forelimbs for powered flight.


Tetrapteryx Dermatobia Archaeopteryx Microraptor Serikornis 


  1. Abel O (1912) Grundzüge der Palaeobiologie der Wirbeltiere. E. Schweizerbart, StuttgartCrossRefGoogle Scholar
  2. Agnolín FL, Novas FE (2013) Avian ancestors. A review of the phylogenetic relationships of the theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae. SpringerBriefs Earth Syst Sci.
  3. Beebe W (1915) A tetrapteryx stage in the ancestry of birds. Zoologica 2(2):37–52Google Scholar
  4. Chatterjee S, Templin RJ (2007) Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui. Proc Natl Acad Sci USA 104(5):1576–1580CrossRefGoogle Scholar
  5. Dames WB (1884) Ueber Archaeopteryx. Paleontol Abh 2:39–41Google Scholar
  6. Dececchi TA et al (2016) The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents. PeerJ 4:e2159. CrossRefGoogle Scholar
  7. Gould CG (2004) The remarkable life of William Beebe. Island Press, Washington, DCGoogle Scholar
  8. Heilmann G (1926) The origin of birds. Dover, New YorkGoogle Scholar
  9. Jacobs B, Brown D (2006) Cutaneous furuncular myiasis: human infestation by the botfly. Can J Plast Surg 14(1):31–32CrossRefGoogle Scholar
  10. Kahn DG (1999) Myiasis secondary to Dermatobia hominis (Human Botfly) presenting as a long-standing breast mass. Arch Pathol Lab Med 123:829–831Google Scholar
  11. Kane J et al (2016) God’s word or human reason? An inside perspective on creationism. Inkwater Press, PortlandGoogle Scholar
  12. Lang T, Smith DS (2003) Wiggling subcutaneous lumps. Clin Infect Dis 37:2087–2088CrossRefGoogle Scholar
  13. Lappen H (2017) What is a bird?—easy question, complicated answer. Daily Hampshire Gazette (Northampton, Massachusetts) 231(292):C7Google Scholar
  14. Lefèvre U et al (2017) A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers. Sci Nat 104:74CrossRefGoogle Scholar
  15. McMenamin MAS, Lafreniere MM (2015) A concise field guide to miniature models of dinosaurs and other extinct monsters. Meanma Press, South HadleyGoogle Scholar
  16. Olson SL (2000) Countdown to Piltdown at National Geographic: the rise and fall of Archaeoraptor. Backbone 13(2):1–3Google Scholar
  17. Rossi MA, Zucoloto S (1973) Fatal cerebral myiasis caused by the tropical warble fly, Dermatobia hominis. Med Vet Entomol 15:22–27Google Scholar
  18. Sampson CE et al (2001) Botfly myiasis: case report and brief review. Ann Plast Surg 46:150–152CrossRefGoogle Scholar
  19. Shubin N et al (1997) Fossils, genes and the evolution of animal limbs. Nature 388:639–648CrossRefGoogle Scholar
  20. Sterling KB et al (1997) Biographical dictionary of American and Canadian naturalists and environmentalists. Greenwood Press, WestportGoogle Scholar
  21. Swinnerton HH (1950) Outlines of palaeontology, 3rd edn. Edward Arnold, LondonGoogle Scholar
  22. Vogt MC (1879) L’Archaeopteryx macrura.—Un intermédiaire entre les oiseaux et les reptiles. La Revue Scientifique, Second Series 9(11):241–245Google Scholar
  23. Welker RH (1975) Natural man: the life of William Beebe. Indiana University Press, Bloomington and IndianapolisGoogle Scholar
  24. Xu X et al (2000) The smallest known non-avian theropod dinosaur. Nature 408:705–708CrossRefGoogle Scholar
  25. Zhang H et al (2015) Armored kinorhynch-like scalidophoran animals from the Early Cambrian. Sci Rep.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mark A. S. McMenamin
    • 1
  1. 1.Department of Geology and GeographyMount Holyoke CollegeSouth HadleyUSA

Personalised recommendations