Coelacanth Vestiges

  • Mark A. S. McMenamin
Part of the Springer Geology book series (SPRINGERGEOL)


A vestigial second dorsal fin spine in a Carboniferous rhabdodermatid coelacanth (cf. Rhabdoderma sp.) provides new data bearing on the evolutionary origins of coelacanths. The fossil was recovered from a cannel coal deposit in the Allegheny Group of Ohio. A vestigial second dorsal fin spine occurs between the second dorsal fin endochondrial support plate and the second dorsal fin. The fin spine is preserved as a carbonized impression showing longitudinal ridges, comparable to the ridges seen on dorsal fin spine of the early osteichthyan Guiyu oneiros. A diagonal band of bends in the tracks of the spine ridges is seen in the medial spines of both Guiyu oneiros and cf. Rhabdoderma sp., as is compression of the ridges to form a reticulate pattern near the base of the spine. The vestigial spine in cf. Rhabdoderma sp. indicates the evolutionary derivation of coelacanths from the Guiyu-Psarolepis cluster, and furthermore suggests that the Guiyu-Psarolepis cluster is more closely allied to sarcopterygians than to basal actinopterygians. The vestigial coelacanth medial spine reported here represents a second type of osteichthyan medial spine and provides new data concerning the origin of coelacanths and possible affinities of the Guiyu-Psarolepis cluster. This conclusion is further supported by the reappearance of the Guiyu median dorsal plate as an otico-occipital shield in the bizarre Triassic latimeriid coelacanth Foreyia maxkuhni.


Coelacanth Rhabdoderma Guiyu Psarolepis Foreyia Polypterus Cardiosuctor Hadronector Polyosteorhynchus Doliodus 


  1. Agassiz L (1832) Untersuchungen ueber die fossilen Fische der Lias-Formation. Neues Jb Miner Geol Paläont 1832:139–149Google Scholar
  2. Ahlberg PE (1992) Coelacanth fins and evolution. Nature 358:459CrossRefGoogle Scholar
  3. Apesteguía S, Zaher HA (2006) Cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature 440:1037–1040CrossRefGoogle Scholar
  4. Benton MJ (2005) Vertebrate palaeontology, 3rd edn. Blackwell, OxfordGoogle Scholar
  5. Cavin L et al (2017) Heterochronic evolution explains novel body shape in a Triassic coelacanth from Switzerland. Sci Rep 7:13695. CrossRefGoogle Scholar
  6. Cloutier R (2010) The fossil record of fish ontogenies: insights to developmental patterns and processes. Semin Cell Dev Biol 21:400–413CrossRefGoogle Scholar
  7. Dines JP et al (2014) Sexual selection targets cetacean pelvic bones. Evolution 68(11):3296–3306CrossRefGoogle Scholar
  8. Dutheil DB (1999) The first articulated fossil cladistian: Serenoichthys kemkemensis, gen. et sp. nov., from the Cretaceous of Morocco. J Vert Paleo 19:243–246CrossRefGoogle Scholar
  9. Forey PL (1981) The coelacanth Rhabdoderma in the Carboniferous of the British Isles. Palaeontology 24:203–229Google Scholar
  10. Forey PL (1988) Golden jubilee for the coelacanth Latimeria chalumnae. Nature 336(22):727–732CrossRefGoogle Scholar
  11. Forey PL (1998) History of the coelacanth fishes. Chapman & Hall, LondonGoogle Scholar
  12. Fraas O (1861) Ueber Semionotus unde einige Keuper-Conchylien. Jh Ver vaterl Naturk Württ 17:81–101Google Scholar
  13. Fricke H, Plante R (1988) Habitat requirements of the living coelacanth Latimeria chalumnae at Grande Comore, Indian Ocean. Naturwissenschaften 75(3):140–151CrossRefGoogle Scholar
  14. Gayet M, Meunier FJ (1996) Nouveaux Polypteriformes du gisement coniacien-sénonien d’In Becetem (Niger). C R Acad Sci Paris, sér II a 322:710–707Google Scholar
  15. Geoffroy Saint-Hilaire E (1809) Poissons du Nil, de la Mer Rouge et de la Méditerranée. In: Description de l-Egypte, Vol. 1, Imprimerie impériale, ParisGoogle Scholar
  16. Giles S et al (2017) Early members of ‘living fossil’ lineage imply later origin of modern ray-finned fishes. Nature 549:265–268CrossRefGoogle Scholar
  17. Goodrich ES (1942) Denticles in fossil Actinopterygii. Quart J Microscop Sci 83:459–464Google Scholar
  18. Grandstaff BS et al (2012) Bawitius, gen. nov., a giant polypterid (Osteichthyes, Actinopterygii) from the Upper Cretaceous Bahariya Formation of Egypt. J Vertebr Paleontol 32(1):17–26CrossRefGoogle Scholar
  19. Hook RW, Baird D (1988) An overview of the Upper Carboniferous fossil deposit at Linton, Ohio. Ohio J Sci 88:55–60Google Scholar
  20. Johnson GD (2003) Dentitions of Barbcabornia from the upper Paleozoic of North America. Mitt Mus Nat Kd Berl Geowiss Reihe 6:125–146Google Scholar
  21. Long JA (2001) On the relationships of Psarolepis and the onychodontiform fishes. J Vert Paleo 21:815–820CrossRefGoogle Scholar
  22. Lowe-McConnell R (2009) Fisheries and cichlid evolution in the African Great Lakes: progress and problems. Fr Rev 2:131–151Google Scholar
  23. Lund R, Lund WL (1984) New genera and species of coelacanths from the Bear Gulch Limestone (Lower Carboniferous) of Montana (U.S.A.) Geobios 17(2):237–244CrossRefGoogle Scholar
  24. Lund R, Lund WL (1985) Coelacanths from the Bear Gulch Limestone (Namurian) of Montana and the evolution of the coelacanthiformes. Carnegie Mus Nat Hist Bull 25:1–74Google Scholar
  25. Lund R, Poplin C (1999) Fish diversity of the Bear Gulch Limestone, Namurian, Lower Carboniferous of Montana, USA. Geobios 32(2):285–295CrossRefGoogle Scholar
  26. Maisey JG et al (2017) Pectoral morphology in Doliodus: bridging the ‘acanthodian’-chondrichthyan divide. Am Mus Novit 3875:1–15CrossRefGoogle Scholar
  27. McCune AR (1986) A revision of Semionotus (Pisces: Semionotidae) from the Triassic and Jurassic of Europe. Palaeontology 29(2):213–233Google Scholar
  28. Meier JI et al (2017) Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat Commun 8.
  29. Mickle KE (2012) Unraveling the systematics of palaeoniscoid fishes—lower actinopterygians in need of a complete phylogenetic revision. Ph.D. Dissertation, University of KansasGoogle Scholar
  30. Motani R (1999) Phylogeny of the Ichthyopterygia. J Vert Paleont 19(3):472–495CrossRefGoogle Scholar
  31. Schultze H-P (1972) Early growth stages in coelacanth fishes. Nature New Biol 236:90–91CrossRefGoogle Scholar
  32. Sire J-Y et al (1998) Comparison of teeth and dermal denticles (odontodes) in the teleost Denticeps clupeoides (Clupeomorpha). J Morph 237:237–255CrossRefGoogle Scholar
  33. Wendruff AJ, Wilson MVH (2012) A fork-tailed coelacanth, Rebellatrix divaricerca, gen. et sp. nov. (Actinistia, Rebellatricidae, fam. nov.), from the lower Triassic of western Canada. J Vert Paleont 32(3):499–511CrossRefGoogle Scholar
  34. Wendruff AJ, Wilson MVH (2013) New early Triassic coelacanth in the family Laugiidae (Sarcopterygii: Actinistia) from the Sulphur Mountain formation near Wapiti Lake, British Columbia, Canada. Can J Earth Sci 50:904–910CrossRefGoogle Scholar
  35. Witzmann F et al (2010) A juvenile early Carboniferous (Viséan) coelacanth from Rösenbeck (Rhenish Mountains, Germany) with derived postcranial features. Fossil Record 13(2):309–316CrossRefGoogle Scholar
  36. Zaton et al (2017) The first direct evidence of a late Devonian coelacanth fish feeding on conodont animals. Sci Nat 104(3-4):26. CrossRefGoogle Scholar
  37. Zhang X-G, Aldridge RJ (2007) Development and diversification of trunk plates of the lower Cambrian lobopodians. Palaeontology 50(2):401–415CrossRefGoogle Scholar
  38. Zhu M et al (2012) Fossil fishes from China provide first evidence of dermal pelvic girdles in osteichthyans. PLoS One 7:e35103. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mark A. S. McMenamin
    • 1
  1. 1.Department of Geology and GeographyMount Holyoke CollegeSouth HadleyUSA

Personalised recommendations