Crystal Creature

  • Mark A. S. McMenamin
Part of the Springer Geology book series (SPRINGERGEOL)


An agglutinated animal (or possibly protist) of the Late Proterozoic Clemente Formation biota cemented an array of tourmaline crystals (trigonal prisms; schorl/dravite composition) to its dorsal surface, presumably as ballast, in the earliest known case of an agglutinated animal. Quantitative confirmation of the spatial association (clustering) of the tiny crystals is demonstrated here by means of Kappa (K) value analysis. This discovery of this Proterozoic “crystal creature” reveals both the earliest known case of agglutination, the earliest known case of monomineralogic agglutination, and the earliest known bioaccumulation of tabular crystals of the same mineral. This case compares to the preferential selection of ilmenite to form an agglutinated exoskeleton in the Cambrian agmatan Volborthella. It also compares to the preferential selection of muscovite flakes to form the agglutinated Cambrian worm tube Onuphionella. Agglutinated dorsal skeletons of the Proterozoic and Early Cambrian utilized selected mineral types, including white mica, ilmenite, anatase, and tourmaline. All of these minerals potentially afford protection from UV-B radiation, and may have been deployed on the dorsal surfaces of these early animals to serve as sunscreen.


Clemente Formation Proterozoic Volborthella Salterella Campitius Onuphionella Tourmaline Anatase Ilmenite Kappa value 


  1. Beurlen H et al (2011) Geochemical and geological controls on the genesis of gem-quality “Paraíba Tourmaline” in granitic pegmatites from northeastern Brazil. Can Mineral 49(1).
  2. Buettner KM, Valentine AM (2012) Bioinorganic chemistry of titanium. Chem Rev 112:1863–1881CrossRefGoogle Scholar
  3. Butterfield NJ (2008) An early Cambrian radula. J Paleontol 82(3):543–554CrossRefGoogle Scholar
  4. Caldwell MM, Natchwey DS (1975) Introduction and overview. Chapter 1. CIAP monograph 5. United States Department of Transportation, Washington, DCGoogle Scholar
  5. Chatterjee SR et al (1975) Authigenic tourmaline in the Precambrian metasediments around Jamua, District Bhagalpur, Bihar, India. Sediment Geol 13(2):153–156CrossRefGoogle Scholar
  6. Closs D (1967) Goniatiten mit radula und kieferapparat in der Itararé Formation von Uruguay. Palaeont Zeitschr 41:19–37CrossRefGoogle Scholar
  7. Conway Morris S, Peel JS (1995) Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philos Trans R Soc B 347(1321):305–358CrossRefGoogle Scholar
  8. Cooper GA et al (1952) Cambrian stratigraphy and paleontology near Caborca, northwestern Sonora, Mexico. Smithson Misc Collect 119(1):1–184Google Scholar
  9. Ertl A (2007) Über die typlokalität und die nomenklatur des minerals dravit. Mitt Österr Miner Ges 153:265–271Google Scholar
  10. Espe W (2013) Materials of high vacuum technology. Volume 2, silicates. Pergamon Press, Elsevier, OxfordGoogle Scholar
  11. Firby JB, Durham JW (1974) Molluscan radula from earliest Cambrian. J Paleontol 48(6):1109–1119Google Scholar
  12. Gabbott SE (1999) Orthoconic cephalopods and associated fauna from the late Ordovician Soom Shale Lagerstätte, South Africa. Palaeontology 42:123–148CrossRefGoogle Scholar
  13. Gehling JG et al (2014) Scratch traces of large Ediacara bilaterian animals. J Paleontol 88(2):284–298CrossRefGoogle Scholar
  14. Hagadorn JW, Waggoner B (2002) The early cambrian problematic fossil volborthella: new insights from the Basin and range. In: Corsetti F (ed) Proterozoic-Cambrian of the Great Basin and beyond, book 93. The Pacific section of the Society of Economic Paleontologists and Mineralogists (SEPM), Tulsa, pp 135–149Google Scholar
  15. Padilla DK (1998) Inducible phenotypic plasticity of the radula in Lacuna (Gastropoda: Littorinidae). Veliger 41(2):201–204Google Scholar
  16. Peel J (2016) Anatase and Hadimopanella selection by Salterella from the Kap Troedsson Formation (Cambrian Series 2) of North Greenland. GFF 139(1).
  17. Scarani V (2010) Information science: guaranteed randomness. Nature 464:988–989CrossRefGoogle Scholar
  18. Signor PW, McMenamin MAS (1988) The Early Cambrian worm tube Onuphionella from California and Nevada. J Paleontol 62(2):233–240CrossRefGoogle Scholar
  19. Signor PW, McMenamin MAS (1994) Lower Cambrian fossil Volborthella: the whole truth or just a piece of the beast?—reply. Geology 22(7):666CrossRefGoogle Scholar
  20. Smith MR (2012) Mouthparts of the Burgess Shale fossils Odontogriphus and Wiwaxia: implications for the ancestral molluscan radula. Proc R Soc B.
  21. Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843–883CrossRefGoogle Scholar
  22. Todt C, Wanninger A (2010) Of tests, trochs, shells, and spicules: development of the basal mollusk Wirenia argentea (Solenogastres) and its bearing on the evolution of trochozoan larval key features. Front Zool 7(6).
  23. Vinther J (2015) The origins of molluscs. Palaeontology 58(1):19–34CrossRefGoogle Scholar
  24. von Middendorf AT (1847) Beiträge zu einer malacolozoologica rossica. Chitonen, St. PetersburgCrossRefGoogle Scholar
  25. Yochelson EL (1977) Agmata, a proposed extinct phylum of Early Cambrian age. J Paleontol 51(3):437–454Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mark A. S. McMenamin
    • 1
  1. 1.Department of Geology and GeographyMount Holyoke CollegeSouth HadleyUSA

Personalised recommendations