Clemente Biota

  • Mark A. S. McMenamin
Part of the Springer Geology book series (SPRINGERGEOL)


A diverse fauna of Ediacarans from the Clemente Formation of northwestern Sonora, México, includes Pteridinium cf. P. simplex, a recumbent sand frond Beothukis cf. B. mistakensis, the kimberellomorph Kimberella cf. K. quadrata, the solzid kimberellomorph Zirabagtaria ovata n. gen. n. sp., the praecambridiid Palankiras palmeri n. gen. n. sp., Vendamonia truncata n. gen. n. sp., and the aculiferans Clementechiton sonorensis McMenamin and Fleury, 2016 and Korifogrammia clementensis n. gen. n. sp. The Clemente biota provides new data regarding the Ediacaran Cuticle Paradox, which holds that in spite of their apparent simplicity, the Ediacaran cuticle in fact hosted a highly complex morphogenetic field. In a corollary of Williston’s Law, this cuticle underwent successive simplification at the end of the Proterozoic.


Clemente Formation Proterozoic Pteridinium Beothukis Kimberella Zirabagtaria Palankiras Vendamonia Korifogrammia Aculiferans 


  1. Alpert SP (1976) Trilobite and star-like trace fossils from the White-Inyo Mountains, California. J Paleo 50(2):226–239Google Scholar
  2. Billings E (1872) On some fossils from the primordial rocks of Newfoundland. Can Nat Geol 6:465–479Google Scholar
  3. Brasier MD, Antcliffe JB (2009) Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. J Geol Soc Lond 166(2):363–384CrossRefGoogle Scholar
  4. Briggs DEG, Clarkson ENK (1987) The first tomopterid, a polychaete from the Carboniferous of Scotland. Lethaia 20(3):257–262CrossRefGoogle Scholar
  5. Bykova N et al (2017) A geochemical study of the Ediacaran discoidal fossil Aspidella preserved in limestones: implications for its taphonomy and paleoecology. Geobiology 15:572–587CrossRefGoogle Scholar
  6. Crimes TP (1987) Trace fossils and correlation of late Precambrian and early [sic] Cambrian strata. Geol Mag 124:97–119CrossRefGoogle Scholar
  7. Cui H, Kaufman AJ, Xiao S, Zhou C, Liu X-M (2017) Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chem Geol 450:59–80CrossRefGoogle Scholar
  8. Darroch SAF et al (2017) Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina. Biol Lett 13:20170033CrossRefGoogle Scholar
  9. Dzik J, Martyshyn A (2015) Taphonomy of the Ediacaran Podolimirus and associated dipleurozoans from the Vendian of Ukraine. Precambrian Res 269:139–146CrossRefGoogle Scholar
  10. Elliot DA et al (2011) New evidence on the taphonomic context of the Ediacaran Pteridinium. Acta Palaeontol Pol 56(3):641–650CrossRefGoogle Scholar
  11. Evans SD et al (2017) Highly regulated growth and development of the Ediacaran macrofossil Dickinsonia costata. PLoS One 12(5):e0176874CrossRefGoogle Scholar
  12. Fedonkin MA (2003) The origin of Metazoa in the light of the Proterozoic fossil record. Paleontol Res 7(1):9–41CrossRefGoogle Scholar
  13. Fedonkin MA et al (2007) The rise of animals: evolution and diversification of the Kingdom Animalia. Johns Hopkins University Press, BaltimoreGoogle Scholar
  14. Gehling JG (2004) Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. PALAIOS 14(1):40–57CrossRefGoogle Scholar
  15. Gehling JG et al (2000) The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology 43:427–456CrossRefGoogle Scholar
  16. Gibson BM et al (2017) Ediacaran-style decay experiments with anemones and sea hares. Geol Soc Am Abstr Progr 49(6).
  17. Glaessner MF (1958) New fossils from the base of the Cambrian in South Australia. Trans R Soc S Aust 81:185–188Google Scholar
  18. Glaessner MF (1959) The oldest fossil faunas in South Australia. Geol Rundsch 47(2):522–531CrossRefGoogle Scholar
  19. Glaessner MF (1979) Precambrian. In: Berggren WA et al (eds) Treatise on invertebrate paleontology, part A. Geological Society of America and the University of Kansas, Boulder/Lawrence, pp 79–118Google Scholar
  20. Glaessner MF, Wade M (1966) The late Precambrian fossils from Ediacara, South Australia. Palaeontology 9(4):599–628Google Scholar
  21. Glaessner MF, Wade M (1971) Praecambridium-a primitive arthropod. Lethaia 4:71–77CrossRefGoogle Scholar
  22. Godfrey-Smith P (2016) Other minds. Farrar, Straus and Giroux, New YorkGoogle Scholar
  23. Grazhdankin DV (2004) Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30(2):203–221CrossRefGoogle Scholar
  24. Grazhdankin D, Seilacher A (2005) A re-examination of the Nama-type Vendian organism Rangea schneiderhoehni. Geol Mag 142(5):571–582CrossRefGoogle Scholar
  25. Hall M et al (2013) Stratigraphy, palaeontology and geochemistry of the late Neoproterozoic Aar Member, southwest Namibia: reflecting environmental controls on Ediacara fossil preservation during the terminal Proterozoic in African Gondwana. Precambrian Res 238:214–232CrossRefGoogle Scholar
  26. Hoekzema RS et al (2017) Quantitative study of developmental biology confirms Dickinsonia as a metazoan. Proc R Soc B 284(1862).
  27. Hoyal Cuthill JF, Conway Morris S (2017) Nutrient-dependent growth underpinned the Ediacaran transition to large body size. Nat Ecol Evol 1:1201–1204CrossRefGoogle Scholar
  28. Ivantsov AY (2007) Small Vendian transversely articulated fossils. Paleontol J 41(2):113–122CrossRefGoogle Scholar
  29. Ivantsov AY (2009) A new reconstruction of Kimberella, a problematic Vendian metazoan. Paleontol J 43(6):601–611CrossRefGoogle Scholar
  30. Ivantsov AY (2017) The most probable Eumetazoa among late Precambrian macrofossils. Invertebr Zool 14(2):127–133Google Scholar
  31. Ivantsov AY, Leonov MV (2008) Otpechatki vendskix zhivotnykh-unikal’nye paleontologicheskie ob’eky Archangel’skoi oblasti. Arkhangel’sk, RussiaGoogle Scholar
  32. Jensen S, Mens K (2001) Trace fossils Didymaulichnus cf. tirasensis and Monomorphichnus isp. from the Estonian Lower Cambrian, with a discussion on the Early Cambrian ichnocoenoses of Baltica. Proc Estonian Acad Sci Geol 50(2):75–85Google Scholar
  33. Laflamme M et al (2013) The end of the Ediacara biota: extinction, biotic replacement or Cheshire Cat? Gondwana Res 23:558–573CrossRefGoogle Scholar
  34. Lang FG et al (2005) Paleoproterozoic Mojave Province in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of Precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora. Geol Soc Am Spec Pap 393:183–198Google Scholar
  35. Liu AG et al (2016) Martin Brasier’s contribution to the palaeobiology of the Ediacaran-Cambrian transition. In: Brasier AT et al (eds) Earth system evolution and early life: a celebration of the work of Martin Brasier. Geological Society, London, Special Publications 448:
  36. MacGabhann BA (2007) Discoidal fossils of the Ediacaran biota: a review of current understanding. In: Vickers-Rich P, Komarower P (eds) The rise and fall of the Ediacaran biota. Geological Society of London Special Publications 286, London, pp 297–313Google Scholar
  37. McCall GJH (2006) The Vendian (Ediacaran) in the geological record: enigmas in geology’s prelude to the Cambrian explosion. Earth-Sci Rev 77:1–229CrossRefGoogle Scholar
  38. McMenamin MAS (1984) Paleontology and stratigraphy of lower Cambrian and upper Proterozoic sediments, Caborca region, northwestern Sonora, Mexico. Ph.D. Dissertation, University of California at Santa Barbara. University Microfilms International, Ann ArborGoogle Scholar
  39. McMenamin MAS (1993) Osmotrophy in fossil protoctists and early animals. Invertebr Reprod Dev 22(1–3):301–304Google Scholar
  40. McMenamin MAS (1996) Ediacaran biota from Sonora, Mexico. Proc Nat Acad Sci 93:4990–4993CrossRefGoogle Scholar
  41. McMenamin MAS (1998) The garden of Ediacara: discovering the first complex life. Columbia University Press, New YorkGoogle Scholar
  42. McMenamin MAS (ed) (2001) Paleontology Sonora: Lipalian and Cambrian. Meanma Press, South HadleyGoogle Scholar
  43. McMenamin MAS (2003a) Origin and early evolution of predators: the ecotone model and early evidence for macropredation. In: Kelley PH et al (eds) Predator-prey interactions in the fossil record. Kluwer, New York, pp 159–169Google Scholar
  44. McMenamin MAS (2003b) Spriggina is a trilobitoid ecdysozoan. Geol Soc Am Abstr Progr 35(6):105Google Scholar
  45. McMenamin MAS (2004) The ptychoparioid trilobite Skehanos gen. nov. from the Middle Cambrian of Avalonian Massachusetts and the Carolina Slate Belt, USA. Northeast Geol Environ Sci 24(4):276–281Google Scholar
  46. McMenamin MAS (2006) New data on the earliest animals and Ediacarans from Sonora, Mexico. Geol Soc Am Abstr Progr 38(7):303Google Scholar
  47. McMenamin MAS (2011) Fossil chitons and Monomorphichnus from the Ediacaran Clemente Formation, Sonora, Mexico. Geol Soc Am Abstr Progr 43(5):87Google Scholar
  48. McMenamin MAS (2016) Dynamic paleontology: using quantification and other tools to decipher the history of life. Springer, ChamCrossRefGoogle Scholar
  49. McMenamin MAS, Schulte McMenamin DL (1990) The emergence of animals: the Cambrian breakthrough. Columbia University Press, New YorkGoogle Scholar
  50. McMenamin MAS et al (1983) Precambrian-Cambrian transition problem in western North America: Part II. Early Cambrian skeletonized fauna and associated fossils from Sonora, Mexico. Geology 11:227–230CrossRefGoogle Scholar
  51. Meyer A (1926) Die Segmentalorgane von Tomopteris catharina (Gosse) nebst Bermerkungenueber das Nervensystem, die rosetten-förmigen Organe und die Cölombewimperung. Zeitschrift für Wisenschaftliche Zoologie 127:297–402Google Scholar
  52. Meyer M et al (2014a) Taphonomy of the Ediacaran fossil Pteridinium simplex preserved three-dimensionally in mass flow deposits, Nama Group, Namibia. J Paleontol 88(2):240–252CrossRefGoogle Scholar
  53. Meyer M et al (2014b) Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Res 249:79–87CrossRefGoogle Scholar
  54. Narbonne GM (2005) The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Ann Rev Earth Planet Sci 33:421–442CrossRefGoogle Scholar
  55. Parry LA et al (2017) Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nat Ecol Evol.
  56. Paterson JR et al (2017) Rheotaxis in the Ediacaran epibenthic organism Parvancorina from South Australia. Sci Rep.
  57. Pettijohn FJ et al (1972) Sand and sandstone. Springer, New YorkGoogle Scholar
  58. Pflug HD (1972) Zur Fauna der Nama-Schichten in Südwest-Afrika. III. Erniettomorpha, Bau und Systematik. Palaeontographica Abt A 139:134–170Google Scholar
  59. Phillips Dales R (1971) Bioluminescence in pelagic polychaetes. J Fish Res Board Can 28(10):1487–1489CrossRefGoogle Scholar
  60. Savazzi E (2015) The early Cambrian Eophyton toolmark and its producer. Paleontol Res 19(1):61–75CrossRefGoogle Scholar
  61. Schiffbauer JD et al (2016) The latest Ediacaran wormworld fauna: setting the ecological stage for the Cambrian explosion. GSA Today 26(11):4–11CrossRefGoogle Scholar
  62. Schwabe E (2010) Illustrated summary of chiton terminology (Mollusca, Polyplacophora). Spixiana 33(2):171–194Google Scholar
  63. Seilacher A (1989) Vendozoa: organismic constructions in the Proterozoic biosphere. Lethaia 22:229–239CrossRefGoogle Scholar
  64. Seilacher A (1994) Early multicellular life: late Proterozoic fossils and the Cambrian explosion. In: Bengtson S (ed) Early life on earth. Columbia University Press, New York, pp 389–400Google Scholar
  65. Seilacher A et al (2003) Ediacaran biota: the dawn of animal life in the shadow of giant protists. Paleontol Res 7(1):43–54CrossRefGoogle Scholar
  66. Sigwart JD (2017) Zoology: molluscs all beneath the sun, one shell, two shells, more or none. Curr Biol 27:R702–R719CrossRefGoogle Scholar
  67. Sokolov BS (1965) Paleontologiya dokembriya i organicheski mir k nachalu fanerozoya. Bsesoyuznyi simposiu po paleontologii dokembriya. Novosibirsk, pp 3–7Google Scholar
  68. Sour-Tovar F et al (2007) Ediacaran and Cambrian index fossils from Sonora, Mexico. Palaeontology 50(1):169–175CrossRefGoogle Scholar
  69. Stewart JH et al (1984) Upper Proterozoic and Cambrian Rocks in the Caborca Region, Sonora, Mexico—physical stratigraphy, biostratigraphy, paleocurrent studies and regional relations. US Geol Surv Prof Pap 1309:1–36Google Scholar
  70. Tarhan LG et al (2016) Exceptional preservation of soft-bodied Ediacara biota promoted by silica-rich oceans. Geology 44:951–954CrossRefGoogle Scholar
  71. Tojo B et al (2007) Theoretical morphology of quilt structures in Ediacaran fossils. In: Vickers-Rich P, Komarower P (eds) The rise and fall of the Ediacaran biota. Geological Society of London Special Publications 286, London, pp 399–404Google Scholar
  72. Vinther J (2015) The origins of molluscs. Palaeontology 58(1):19–34CrossRefGoogle Scholar
  73. Williston SW (1914) Water reptiles of the past and present. Chicago University Press, ChicagoCrossRefGoogle Scholar
  74. Zhuravlev AY et al (2012) New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain. Acta Palaeontol Pol 57(1):205–224CrossRefGoogle Scholar
  75. Zittel KA (1913) Text-book of paleontology. Macmillian, LondonGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mark A. S. McMenamin
    • 1
  1. 1.Department of Geology and GeographyMount Holyoke CollegeSouth HadleyUSA

Personalised recommendations