Shuram Excursion

  • Mark A. S. McMenamin
Part of the Springer Geology book series (SPRINGERGEOL)


The Shuram excursion represents the greatest negative carbon isotopic excursion in earth history, and provides an important chemostratigraphic marker horizon of global extent. The excursion is linked to the second great oxygenation event in earth history, an oxygen crisis that resulted in a transition from sulfidic oceans to a marine realm rich in sulfate. The Shuram excursion (560–550 Ma) is represented in Sonora, México by the Clemente oolite of the Clemente Formation. Ediacaran fossils (such as the Clemente biota of Unit 4 of the Clemente Formation) occur in rocks deposited below the excursion. The age of the Clemente Ediacaran biota thus falls between 550 and 560 Ma. In spite of the fact that the Sturtian glaciation apparently triggered the earliest known mass extinction on earth (the Tindir Mass Extinction), several lines of evidence suggest that the biosphere controlled the timing of and the onset of the Late Proterozoic glaciations, and that it also controlled the timing of the melting of the ice. Furthermore, it appears that the biosphere itself influenced the timing of the appearance of the Ediacaran biota. Whereas snowball earth events lurched suddenly from very cold (tillites) to very hot (cap carbonates) climate, the sequence going from the Gaskiers glacial event (c. 580 million years ago) to the Shuram was part of a wild climatic gyration where the earth went from hot (intense granite weathering at high latitudes) to cold (Gaskiers glaciation) to hot (Shuram event). The Shuram is the greatest negative carbon isotopic excursion in earth history, possibly because this is the moment in earth history when the burrowing animals assert themselves in a geochemical sense, and by remobilizing sea floor carbon, forestall a major glaciation.


Shuram excursion Clemente Formation Clemente oolite Hardgrounds Isotope chemostratigraphy Gaskiers glaciation Roxbury Conglomerate Dropstone Cryoconite 


  1. Allison CW, Hilgert JW (1986) Scale microfossils from the early Cambrian of northwest Canada. J Paleontol 60:973–1015CrossRefGoogle Scholar
  2. Bailey RH, Bland BH (2001) Recent developments in the study of the Boston Bay Group. In: West DP, Bailey RH (eds) Guidebook for geological field trips in New England. Geological Society of America Annual Meeting, Boston, pp U1–U23Google Scholar
  3. Barr TD, Kirschvink JL (1983) The paleoposition of North America in the early Paleozoic: new data from the Caborca sequence in Sonora, Mexico. Eos 64(45):689–690Google Scholar
  4. Barrio CA et al (1991) El contacto entre la Formación Loma Negra (Grupo Sierras Bayas) y la Formación Cerro Negro, un ejemplo de paleokarst, Olavarría, Provincia de Buenos Aires. Rev Asoc Geol Argent 46:69–76Google Scholar
  5. Bidigare R et al (1999) Iron-stimulated changes in carbon isotopic fractionation by phytoplankton in equatorial Pacific waters. Paleoceanography 14:589–595CrossRefGoogle Scholar
  6. Boag T et al (2016) Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils. Paleobiology 42(4):574–594CrossRefGoogle Scholar
  7. Boggs S (2012) Principles of sedimentology and stratigraphy, 5th edn. Prentice Hall, BostonGoogle Scholar
  8. Burgess I (2017) Flipped fry freeze. Independent Study Project (supervised by Mark McMenamin), Mount Holyoke College Department of Geology and Geography, pp 1–10Google Scholar
  9. Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–400CrossRefGoogle Scholar
  10. Burns SJ, Matter A (1990) Carbon and oxygen isotope stratigraphy of latest Precambrian to Cambrian(?) carbonates of central Oman. Geol Soc Am Abstr Progr 22(7):190Google Scholar
  11. Burns SJ, Matter A (1993) Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geol Helv 86(2):595–607Google Scholar
  12. Burns SJ et al (1994) The strontium isotopic composition of carbonates from the late Precambrian (~560-540 Ma) Huqf Group of Oman. Chem Geol 111(1–4):269–282CrossRefGoogle Scholar
  13. Caldeira K, Kasting JF (1992) Susceptibility of the early earth to irreversible glaciation caused by carbon dioxide clouds. Nature 359:226–228CrossRefGoogle Scholar
  14. Campen RK et al (2003) Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology 31:231–234CrossRefGoogle Scholar
  15. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453CrossRefGoogle Scholar
  16. Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert A. Garrels. Annu Rev Earth Planet Sci 33:1–36CrossRefGoogle Scholar
  17. Canfield DE, Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–132CrossRefGoogle Scholar
  18. Carto SL (2011) Sedimentology of the Squantum ‘tillite’, Boston Basin, USA: modern analogues and implications for the paleoclimate during the Gaskiers glaciation (c. 580 Ma). Ph.D. Dissertation, University of TorontoGoogle Scholar
  19. Chute NE (1969) Bedrock geologic map of the Blue Hills quadrangle, Norfolk, Suffolk, and Plymouth Counties, Massachusetts. U S Geol Surv Quadrangle 796:1Google Scholar
  20. Clapham ME, Corsetti FA (2005) Deep valley incision in the terminal Neoproterozoic (Ediacaran) Johnnie Formation, eastern California, USA: tectonically or glacially driven? Precambrian Res 141:154–164CrossRefGoogle Scholar
  21. Cloud PE (1983) Banded iron formation—a gradualist’s dilemma. In: Trendall AF, Morris RC (eds) Iron-formation: facts and problems. Elsevier, Amsterdam, pp 401–416CrossRefGoogle Scholar
  22. Cloud PE (1988) Oasis in space. Norton, New YorkGoogle Scholar
  23. Cloud PE et al (1974) Giant stromatolites and associated vertical tubes from the upper Proterozoic Noonday Dolomite, Death Valley region, eastern California. Geol Soc Am Bull 85:1869–1882CrossRefGoogle Scholar
  24. Cohen PA, Knoll AH (2012) Scale microfossils from the mid-Neoproterozoic Fifteenmile Group, Yukon Territory. J Paleontol 86(5):775–800CrossRefGoogle Scholar
  25. Coleman NV et al (2002) Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium. Appl Environ Microbiol 68:2726–2730CrossRefGoogle Scholar
  26. Conway Morris S (2003) Life’s solution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. Corozzi AV (ed) (1967) Studies on glaciers preceded by the discourse of Neuchâtel by Louis Agassiz. Hafner, New YorkGoogle Scholar
  28. Corsetti FA (1998) Regional correlation, age constraints, and geologic history of the Neoproterozoic-Cambrian strata, southern Great Basin, USA: Integrated carbon isotope stratigraphy, biostratigraphy, and lithostratigraphy. Ph.D. Dissertation, University of California at Santa BarbaraGoogle Scholar
  29. Corsetti FA et al (2003) A complex microbiota from snowball earth times: microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA. Proc Natl Acad Sci USA 100:4399–4404CrossRefGoogle Scholar
  30. Corsetti FA et al (2006) Trends in oolite dolomitization across the Neoproterozoic-Cambrian boundary: a case study from Death Valley, California. Sed Geol 191:135–150CrossRefGoogle Scholar
  31. Corsetti FA, Hagadorn JW (2000) Precambrian-Cambrian transition: Death Valley, United States. Geology 28(4):299–302CrossRefGoogle Scholar
  32. Corsetti FA, Kaufman AJ (2000) High resolution chemostratigraphy of the Neoproterozoic Beck Spring Dolomite, Great Basin, USA. Geol Soc Am Abstr 32:144Google Scholar
  33. Crosby WO (1894) Geology of the Boston Basin, Hingham. Occasional Papers of the Boston Society of Natural History 4:179–288Google Scholar
  34. Crowell JC (1999) Pre-Mesozoic ice ages: their bearing on understanding the climate system. Geological Society of America, BoulderGoogle Scholar
  35. Cui H et al (2017) Was the Ediacaran Shuram excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chem Geol 450:59–80CrossRefGoogle Scholar
  36. DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:254–249CrossRefGoogle Scholar
  37. Dietl GP, Flessa KW (2017) Conservation paleobiology: science and practice. Univ Chicago Press, ChicagoGoogle Scholar
  38. Dobson P (1826) Remarks on bowlders [sic]. Am J Sci Ser 1(10):217–218Google Scholar
  39. Donnadieu Y et al (2003) Is there a conflict between the Neoproterozoic glacial deposits and the snowball earth interpretation?: an improved understanding with numerical modeling. Earth Planet Sci Lett 208:101–112CrossRefGoogle Scholar
  40. Duval B et al (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phycol 11:559–566CrossRefGoogle Scholar
  41. Friedman GM, Sanders JE (1978) Principles of sedimentology. Wiley, New YorkGoogle Scholar
  42. Eriksson M et al (2002) Bacterial growth and biofilm production on pyrene. FEMS Microbiol Ecol 40:21–27CrossRefGoogle Scholar
  43. Fairchild IJ (2001) Encapsulating climate catastrophe: snowball earth. Geoscientist 11:4–5Google Scholar
  44. Gaucher C (2000) Sedimentology, palaeontology and stratigraphy of the Arroyo del Soldado Group (Vendian to Cambrian, Uruguay). Beringeria 26:1–120Google Scholar
  45. Gaucher C et al (2003) Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Res 120:241–278CrossRefGoogle Scholar
  46. Gaucher C et al (2004) Chemostratigraphy of the Lower Arroyo del Soldado Group (Vendian, Uruguay) and palaeoclimatic implications. Gondwana Res 7(3):715–730CrossRefGoogle Scholar
  47. Gingerich PD et al (1983) Origin of whales in epicontental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403–406CrossRefGoogle Scholar
  48. Gong Z et al (2017) Rock magnetic cyclostratigraphy of the Doushantuo Formation, south China and its implication for the duration of the Shuram carbon isotope excursion. Precambrian Res 289:62–74CrossRefGoogle Scholar
  49. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to global warming. Ecol Appl 1:182–195CrossRefGoogle Scholar
  50. Gould CG (2004) The remarkable life of William Beebe. Island Press, Washington, DCGoogle Scholar
  51. Grotzinger JP et al (2011) Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat Geosci 4:285–292CrossRefGoogle Scholar
  52. Hallam A (1992) Great geological controversies, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  53. Harland WB, Rudwick MJS (1964) The great infra-Cambrian ice age. Sci Am 211:28–36CrossRefGoogle Scholar
  54. Higgins JA, Schrag DP (2003) The aftermath of a snowball earth. Geochem Geophys Geosyst 4(3).
  55. Hoffman PF, Li Z-X (2009) A palaeogeographic context for Neoproterozoic glaciation. Pal Pal Pal 277:158–172Google Scholar
  56. Hoffman PF, Schrag DP (2002) The snowball earth hypothesis: testing the limits of global change. Terra Nova 14:129–115CrossRefGoogle Scholar
  57. Hoffmann K-H et al (2004) U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: constraints on Marinoan glaciation. Geology 32(9):817–820CrossRefGoogle Scholar
  58. Huang J et al (2017) Multiple sulfur isotopic records associated with the ‘Shuram excursion’ from South China. Geol Soc Am Abstr Progr 49(6).
  59. Hughes GB et al (2003) Modern spectral climate patterns in rhythmically deposited argillites of the Gowganda Formation (early Proterozoic), southern Ontario, Canada. Earth Planet Sci Lett 207:12–23CrossRefGoogle Scholar
  60. Jackson M et al (2003) Neoproterozoic allochthonous salt tectonics during the Lufilian orogeny in the Katangan copperbelt, central Africa. Geol Soc Am Bull 115:314–330CrossRefGoogle Scholar
  61. Jacobs DK, Speck HP (2017) Cold cradles and warm graves—how temperature constrains oxygen impacting diversity. Geol Soc Am Abstr Progr 49(6).
  62. Li Z-X et al (2013) Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sediment Geol 294:219–232CrossRefGoogle Scholar
  63. Jenkins RJF (1995) The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Res 73:51–69CrossRefGoogle Scholar
  64. Johnson CM et al (2003) Ancient geochemical cycling in the earth as inferred from Fe isotope studies of banded iron formations from the Transvaal craton. Contrib Mineral Petrol 144:523–558CrossRefGoogle Scholar
  65. Kah LC et al (2009) Reinterpreting a Proterozoic enigma: Conophyton-Jacutophyton stromatolites of the Mesoproterozoic Atar Group, Mauritania. Int Assoc Sedimentol Spec Publ 41:277–295Google Scholar
  66. Kennedy MJ et al (2001) Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following earth’s coldest intervals? Geology 29:443–446CrossRefGoogle Scholar
  67. Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball earth. In: Schopf JW, Klein C (eds) The Proterozoic biosphere. Cambridge University Press, Cambridge, MA, pp 51–52Google Scholar
  68. Kirschvink JL et al (1991) The Precambrian/Cambrian boundary: magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China. Eos 1(4):69–91Google Scholar
  69. Koene CJ (1856) Popular lectures: concerning the creation from the formation of the earth to the extinction of the human species, or insights into the natural history of air and its miasmas in connection with acid factories and complaints of those who suffer from their pollution. P. Larcier, BrusselsGoogle Scholar
  70. Kunzmann M et al (2017) Bacterial sulfur disproportionation constrains timing of Neoproterozoic oxygenation. Geology 45(3):207–210CrossRefGoogle Scholar
  71. Laflamme M et al (2013) The end of the Ediacara biota: extinction, biotic replacement or Cheshire Cat? Gondwana Res 23:558–573CrossRefGoogle Scholar
  72. Leck CM, Persson C (1996) The central Arctic Ocean as a source of dimethyl sulfide-seasonal variability in relation to biological activity. Tellus 48:156–177CrossRefGoogle Scholar
  73. Leck CM et al (2004) Can marine micro-organisms influence melting of the Arctic pack ice? Eos 85:25–32CrossRefGoogle Scholar
  74. Le Guerroué E (2006) Sedimentology and chemostratigraphy of the Ediacaran Shuram Formation, Nafum Group, Oman. Ph.D. Dissertation, Swiss Federal Institute of Technology ZürichGoogle Scholar
  75. Licari GR (1978) Biogeology of the late pre-Phanerozoic Beck Spring dolomite of eastern California. J Paleontol 52:767–792Google Scholar
  76. Lund K et al (2003) SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geol Soc Am Bull 115:349–372CrossRefGoogle Scholar
  77. Macdonald FA et al (2010) Early Neoproterozoic scale microfossils in the lower Tindir Group of Alaska and the Yukon Territory. Geology 38:143–146CrossRefGoogle Scholar
  78. Margesin R et al (2002) Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alp Res 34:88–93CrossRefGoogle Scholar
  79. Margaritz M et al (1991) Precambrian/Cambrian boundary problem: carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology 19:847–850CrossRefGoogle Scholar
  80. Macdonald FA et al (2013) The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada. Chem Geol 362:250–272CrossRefGoogle Scholar
  81. Matsen B (2005) Descent: the heroic discovery of the abyss. Vintage Books, New YorkGoogle Scholar
  82. Mawson D (1949) The late Precambrian ice-age and glacial record of the Bibliando dome. J Proc R Soc NSW 82:150–174Google Scholar
  83. McMenamin MAS (1990) 2.13.1 mass extinction: events: Vendian. In: Briggs DEG, Crowther PR (eds) Palaeobiology: a synthesis. Blackwell Scientific Publications, Oxford, pp 179–181Google Scholar
  84. McMenamin MAS et al (1992) Vendian body fossils (?) and isotope stratigraphy from the Caborca area, Sonora, Mexico. North American Paleontological Convention 5:206Google Scholar
  85. McMenamin MAS et al (1994) Upper Precambrian-Cambrian faunal sequence, Sonora, Mexico and lower Cambrian fossils from New Jersey, United States. In: Landing E (ed) Festschrift Honoring Donald W. Fisher, New York State Mus Bull 481:213–227Google Scholar
  86. McMenamin MAS (1996) Ediacaran biota from Sonora, Mexico. Proc Natl Acad Sci 93:4990–4993CrossRefGoogle Scholar
  87. McMenamin MAS (1998) The garden of Ediacara: discovering the first complex life. Columbia Univ Press, New YorkGoogle Scholar
  88. McMenamin MAS (2001) Review of McDonald, NG, The Connecticut Valley in the age of dinosaurs: a guide to the geologic literature. Isis 92:134–135CrossRefGoogle Scholar
  89. McMenamin MAS (2004a) Climate, paleoecology and abrupt change during the Late Proterozoic: a consideration of causes and effects. In: Jenkins GS et al (eds) The extreme Proterozoic: geology, geochemistry, and climate. American Geophysical Union, Washington, DC, pp 215–229Google Scholar
  90. McMenamin MAS (2004b) Gaia and glaciation: Lipalian (Vendian) environmental crisis. In: Schneider SH et al (eds) Scientists debate Gaia: the next century. MIT Press, Cambridge, MA, pp 115–127Google Scholar
  91. McMenamin MAS (2004c) Vendian and Ediacaran. In: Selley RC et al (eds) Encyclopedia of geology. Elsevier, Oxford, pp 371–381Google Scholar
  92. McMenamin MAS, Beuthin JD (2008) Fine clastics of the Boston Bay Group: new data and interpretations concerning depositional processes and environments. In: de Wet AP (ed) Keck Geology Consortium, 21st Keck Research Symposium in geology, short contributions, April 2008. Franklin and Marshall College, Lancaster, pp 209–212Google Scholar
  93. McMenamin MAS, Schulte McMenamin DL (1990) The emergence of animals: the Cambrian breakthrough. Columbia Univ Press, New YorkGoogle Scholar
  94. McMenamin MAS, Schulte McMenamin DL (1994) Hypersea: life on land. Columbia Univ Press, New YorkGoogle Scholar
  95. McMenamin SK et al (2008) Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc Natl Acad Sci USA 105(44):16988–16993CrossRefGoogle Scholar
  96. Melezhik VA et al (2008) The Shuram-Wonoka event recorded in a high-grade metamorphic terrane: insight from the Scandinavian Caledonides. Geol Mag 145(2):161–172CrossRefGoogle Scholar
  97. Miller NR et al (2003) Significance of the Tambien Group (Tigrai, n. Ethiopia) for snowball earth events in the Arabian-Nubian shield. Precambrian Res 121:263–283CrossRefGoogle Scholar
  98. Momeni AA et al (2015) New engineering geological weathering classifications for granitoid rocks. Eng Geol 185:43–51CrossRefGoogle Scholar
  99. Nance RD (1990) Late Precambrian-early Paleozoic arc-platform transitions in the Avalon terrane of the northern Appalachians: review and implications. Geol Soc Am Spec Pap 245:1–11Google Scholar
  100. Passchier S, Erukanure E (2010) Palaeoenvironments and weathering regime of the Neoproterozoic Squantum ‘tillite’, Boston Basin: no evidence of a snowball earth. Sedimentology 57:1526–1544CrossRefGoogle Scholar
  101. Petersen SV et al (2016) End-cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. Nat Commun 7:12079. CrossRefGoogle Scholar
  102. Peterson KJ et al (2003) A fungal analog for Newfoundland Ediacaran fossils? Integr Comp Biol 43:127–136CrossRefGoogle Scholar
  103. Porter SM (2004) The fossil record of early eukaryotic diversification. Paleontol Soc Pap 10:35–50Google Scholar
  104. Porter SM (2011) The rise of predators. Geology 39(6):607–608CrossRefGoogle Scholar
  105. Poulsen CJ et al (2001) Impact of ocean dynamics on the simulation of the Neoproterozoic ‘snowball earth’. Geophys Res Lett 28:1575–1578Google Scholar
  106. Poulsen CJ et al (2002) Testing paleogeographic controls on a Neoproterozoic snowball earth. Geophys Res Lett 29(11).
  107. Prave AR (1999) Two diamictites, two cap carbonates, two δ13C excursions, two rifts: the Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology 27:339–342CrossRefGoogle Scholar
  108. Pu JP et al (2016) Dodging snowballs: geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44(11):955–958CrossRefGoogle Scholar
  109. Rickard D et al (2017) Sedimentary sulfides. Elements 13(2):117–122CrossRefGoogle Scholar
  110. Roberts MT (1982) Depositional environments and tectonic setting of the Crystal Spring Formation, Death Valley region, California. In: Cooper JD et al (eds) Geology of selected areas in the San Bernardino Mountains, western Mojave Desert, and southern Great Basin, California, Death Valley Publishing Company, Shoshone, California, pp 143–154Google Scholar
  111. Rothman DH (2017) Thresholds of catastrophe in the earth system. Sci Adv 3(9).
  112. Runnegar B (2000) Loophole for snowball earth. Nature 405:403–404CrossRefGoogle Scholar
  113. Saltzman MR (2003) Late Paleozoic ice age: oceanic gateway or pCO2? Geology 31:151–154CrossRefGoogle Scholar
  114. Sharp M et al (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110CrossRefGoogle Scholar
  115. Skehan JW (2001) Roadside geology of Massachusetts. Mountain Press, Missoula, MontanaGoogle Scholar
  116. Sour-Tovar F et al (2007) Ediacaran and Cambrian index fossils from Sonora, Mexico. Palaeontology 50(1):169–175CrossRefGoogle Scholar
  117. Stewart JH et al (1984) Upper Proterozoic and Cambrian rocks in the Caborca region, Sonora, Mexico-physical stratigraphy, biostratigraphy, Paleocurrent studies and regional relations. U S Geol Surv Prof Pap 1309:1–36Google Scholar
  118. Stow DAV (2006) Sedimentary rocks in the field-A color guide. Academic Press, BurlingtonGoogle Scholar
  119. Suarez CA et al (2017) A chronostratigraphic assessment of the Moenave Formation, USA using C-isotope chemostratigraphy and detrital zircon geochronology: implication for the terrestrial end Triassic extinction. Earth Planet Sci Lett 475(1):83–93CrossRefGoogle Scholar
  120. Takazi K et al (1994) Clay aerosols and Arctic ice algae. Clay Clay Miner 42:402–408CrossRefGoogle Scholar
  121. Takeuchi N et al (2001) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct Antarct Alp Res 33:115–122CrossRefGoogle Scholar
  122. Tsukui K et al (2017) Developing an enhanced chronology for the terminal Ediacaran-Cambrian transition on a global scale. Geol Soc Am Abstr Progr 49(6).
  123. Tucker ME (1989) Carbon isotopes and Precambrian-Cambrian boundary geology, South Australia: ocean basin formation, seawater chemistry and organic evolution. Terra Nova 1:573–582CrossRefGoogle Scholar
  124. Turunen J et al (2002) Estimating carbon accumulation rates of undrained mires in Finland—application to boreal and subarctic regions. The Holocene 12:79–90CrossRefGoogle Scholar
  125. van de Shootbrugge et al (2008) Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event. Geochem Geophys Geosyst 9:Q04028. Google Scholar
  126. Vanyo JP, Awramik SM (1985) Stromatolites and earth-sun-moon dynamics. Precambrian Res 29:121–142CrossRefGoogle Scholar
  127. Verdel C et al (2011) The Shuram and subsequent Ediacaran carbon isotope excursions from southwest Laurentia, and implications for environmental stability during the metazoan radiation. Geol Soc Am Bull 123(7/8):1539–1559CrossRefGoogle Scholar
  128. Vernadsky V (1998) The biosphere. Copernicus, New YorkCrossRefGoogle Scholar
  129. Vidal G, Knoll AH (1982) Radiations and extinctions of plankton in the late Proterozoic and early Cambrian. Nature 297:57–60CrossRefGoogle Scholar
  130. Wang P et al (2003) Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology 33:239–242CrossRefGoogle Scholar
  131. Wang X et al (2016) Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China. Precambrian Res 273:53–66CrossRefGoogle Scholar
  132. Walker G (2003) Snowball earth: the story of the great global catastrophe that spawned life as we know it. Crown Books, New YorkGoogle Scholar
  133. Wendler I (2013) A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for late Cretaceous global correlation. Earth-Sci Rev 126:116–146CrossRefGoogle Scholar
  134. Wharton RA et al (1985) Cryoconite holes on glaciers. Bioscience 35:440–503CrossRefGoogle Scholar
  135. Williams GE (1975) Late Precambrian glacial climate and the earth’s obliquity. Geol Mag 112:441–465CrossRefGoogle Scholar
  136. Williams GE (1979) Sedimentology, stable-isotope geochemistry and palaeoenvironment of dolostones capping late Precambrian glacial sequences in Australia. J Geol Soc Aust 26:377–386CrossRefGoogle Scholar
  137. Williams H et al (1982) Petrography: an introduction to the study of rocks in thin sections. Freeman, New YorkGoogle Scholar
  138. Williams J (2008) Laminites and dropstones in the Cambridge Argillite (Ediacaran), Hewitt’s Cove, Hingham, Massachusetts. In: de Wet AP (ed) Keck Geology Consortium, 21st Keck Research Symposium in geology, short contributions, April 2008. Franklin and Marshall College, Lancaster, pp 234–237Google Scholar
  139. Williams J et al (2008) Laminites in the Cambridge Argillite (Ediacaran), Hewitt’s Cove, Hingham, Massachusetts. Geol Soc Am Abstr Progr 40(1):69Google Scholar
  140. Wilson JL (1975) Carbonate facies in geologic history. Springer, New YorkCrossRefGoogle Scholar
  141. Wood WT et al (2002) Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness. Nature 420:656–660CrossRefGoogle Scholar
  142. Woods KN (1999) Investigating the nature of the dolomite in a possible Neoproterozoic cap carbonate: the Noonday Formation, Death Valley, CA. Geol Soc Am Abstr Progr 31:486Google Scholar
  143. Zhou C et al (2017) The stratigraphic complexity of the middle Ediacaran carbon isotopic record in the Yangtze Gorges area, South China, and its implications for the age and chemostratigraphic significance of the Shuram excursion. Precambrian Res 288:23–38CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mark A. S. McMenamin
    • 1
  1. 1.Department of Geology and GeographyMount Holyoke CollegeSouth HadleyUSA

Personalised recommendations