• Mark A. S. McMenamin
Part of the Springer Geology book series (SPRINGERGEOL)


Marsupials first appear in Cretaceous North America, their ancestors having arrived from Asia during an eastward migration of Mesozoic metatherians. By the end of the Mesozoic, the North American metatherians had developed into large (over one meter long) animals with a powerful bite force, partly a function of hypertrophied premolars (p3) in some species. The inflated premolar is associated with reappearance of zahnreihen in a Cretaceous metatherian mammal, Didelphodon coyi. The metatherian migration begun in Asia continued through North America, to South America, to Antarctica and on to Australia where marsupials underwent a well known adaptive radiation in ‘splendid isolation’. Until recently it was thought that terrestrial mammaliaforms never reached New Zealand, as New Zealand had tectonically rifted away from Antarctica at 82 million years ago, supposedly before marsupials had reached Antarctica. Recent discoveries from limited exposures of Miocene strata in New Zealand near Otago show that mammaliaforms had indeed colonized and diversified in New Zealand apart from their ancestors in the rest of the Gondwanan continental diaspora. These zealanditherians inhabited the newly characterized continent Zealandia, and were apparently driven to extinction by habitat loss when most of Zealandia was submerged by the sea.


Zealanditherians Zealandia Didelphodon Hypertrophied premolars Repenomamus Zahnreihen Thylacoleo Thylacinus Thylacosmilus Saint Bathans mammal 


  1. Archer M et al (1985) First Mesozoic mammal from Australia—an early Cretaceous monotreme. Nature 318:363–366CrossRefGoogle Scholar
  2. Archer M et al (1992) Description of the skull and non-vestigial dentition of a Miocene platypus (Obdurodon dicksoni n. Sp.) from Riversleigh, Australia, and the problem of monotreme origins. In: Augee ML (ed) Platypus and echidnas. Royal Zoological Society, New South Wales, pp 15–27Google Scholar
  3. Arkins AM (1999) Diet and nectarivorous foraging behavior of the short-tailed bat (Mystacina tuberculata). J Zool 247(2):183–187CrossRefGoogle Scholar
  4. Asahara M et al (2016) Comparative cranial morphology in living and extinct platypuses: feeding behavior, electroreception, and loss of teeth. Sci Adv 2(10):e1601329. CrossRefGoogle Scholar
  5. Beck RMD (2016) The skull of Epidolops ameghinoi from the early Eocene Itaboraí Fauna, southeastern Brazil, and the affinities of the extinct marsupialiform order Polydolopimorphia. J Mammal Evol.
  6. Brand NA et al (2017) The microinvertebrate fossil assemblage of the upper Cretaceous (Campanian-Maastrichtian) Williams Fork formation, western Colorado. Society of Vertebrate Paleontology 77th Annual Meeting Program & Abstracts, Calgary, Canada, 85Google Scholar
  7. Brannick AL, Wilson GP (2017) Exploring the evolution of durophagy in stagodontid metatherians using relative mandibula bending strength. Society of Vertebrate Paleontology 77th Annual Meeting Program & Abstracts, Calgary, Canada, 86Google Scholar
  8. Campbell H, Hutching G (2007) In search of ancient New Zealand. Penguin Books, Auckland/New ZealandGoogle Scholar
  9. Chen C et al (2015) How the mollusc got its scales: convergent evolution of the molluscan scleritome. Biol J Linnean Soc 114:949–954CrossRefGoogle Scholar
  10. Cifelli RL et al (1996) Origin of marsupial pattern of tooth replacement: fossil evidence revealed by high resolution X-ray CT. Nature 379:715–718CrossRefGoogle Scholar
  11. Clarkson C et al (2017) Human occupation of northern Australia by 65,000 years ago. Nature 547:306–310CrossRefGoogle Scholar
  12. Clemens WA (1968) A mandible of Didelphodon vorax (Marsupialia, Mammalia). Los Angeles County Museum, Contributions in. Science 133:1–11Google Scholar
  13. Clemens WA (2006) Early Paleocene (Puercan) peradectid marsupials from northeastern Montana, North American western interior. Palaeontogr Abt A 277:19–31Google Scholar
  14. Cope ED (1892) On a new genus of Mammalia from the Laramie formation. Amer Nat 26:758–762CrossRefGoogle Scholar
  15. Cremin A (2007) The world encyclopedia of archaeology. Firefly Books, Buffalo/New YorkGoogle Scholar
  16. Diamond JM (1990) New Zealand as an archipelago: an international perspective. In: Towns DR et al (eds) Ecological restoration of New Zealand islands. Department of Conservation Wellington, New Zealand, pp 3–8Google Scholar
  17. Dupret V (2004) The pleurosaurs: anatomy and phylogeny. Rev Paléobiol 9:61–80Google Scholar
  18. Ferner K et al (2017) Comparative anatomy of neonates of the three major mammalian groups (monotremes, marsupials, placentals) and implications for the ancestral mammalian neonate morphotype. J Anat.
  19. Flannery TF, Archer M, Rich TH, Jones R (1995) A new family of monotremes feom the Creataceous of Australia. Nature 377(6548):418–420CrossRefGoogle Scholar
  20. Forasiepi AM (2009) Osteology of Arctodictis sinclairi (Mammalia, Metatheria, Sparassodonta) and phylogeny of Cenozoic metatherian carnivores from South America. Monogr Mus Argentino Cienc Nat, n s 6:1–174Google Scholar
  21. Fox RC, Naylor BG (1986) A new species of Didelphodon marsh (Marsupialia) from the upper Cretaceous of Alberta, Canada: paleobiology and phylogeny. N Jb Geol Paläont (Abh) 172(3):357–380Google Scholar
  22. Gelfo JN et al (2015) The oldest mammals from Antarctica, early Eocene of the La Meseta formation, Seymour Island. Palaeontology 58(1):101–110CrossRefGoogle Scholar
  23. Goin FJ et al (2007) New marsupial (Mammalia) from the Eocene of Antarctica, and the origins and affinities of the microbiotheria. Rev Asoc Geol Argent 62(4):597–603Google Scholar
  24. Grayson DK, Meltzer DJ (2003) A requiem for North American overkill. J Archaeol Sci 30:585–593CrossRefGoogle Scholar
  25. Griffiths M et al (1991) Observations on the skulls of fossil and extant echidnas (Monotremata: Tachyglossidae). Aust Mammal 14:87–101Google Scholar
  26. Hillenius WJ (2000) Septomaxilla of nonmammalian synapsids: soft-tissue correlates and a new functional interpretation. J Morphol 245:29–50CrossRefGoogle Scholar
  27. Hu Y et al (2005) Large Mesozoic mammals fed on young dinosaurs. Nature 433:149–152CrossRefGoogle Scholar
  28. Hu Y et al (2010) New basal eutherian mammal from the early Cretaceous Jehol biota, Laioning, China. Proc R Soc B 277:229–236CrossRefGoogle Scholar
  29. Hurum JH et al (2006) Were mammals originally venomous? Acta Pal Polonica 51(1):1–11Google Scholar
  30. Kielan-Jaworowska Z et al (2004) Mammals from the age of dinosaurs: origins, evolution, and structure. Columbia Univ Press, New YorkCrossRefGoogle Scholar
  31. Kissel RA et al (2002) Captorhinus magnus, a new captorhinid (Amniota: Eureptilia) from the lower Permian of Oklahoma, with new evidence on the homology of the astragalus. Can J Earth Sci 39:1363–1372CrossRefGoogle Scholar
  32. Larsson H et al (2010) The winged non-avian dinosaur Microraptor fed on mammals: implications for the Jehol biota ecosystem. Soc Vert Paleont Prog Abstr 70:114AGoogle Scholar
  33. Long JA et al (2002) Prehistoric mammals of Australia and new Guinea: one hundred million years of evolution. Johns Hopkins University Press, Baltimore/MarylandGoogle Scholar
  34. Luo Z-X et al (2003) An early Cretaceous tribosphenic mammal and metatherian evolution. Science 302(5652):1934–1940CrossRefGoogle Scholar
  35. Luo Z-X et al (2015) Mandibular and dental characteristics of late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proc Nat Acad Sci (USA):201519387.
  36. Luo Z-X et al (2017) New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature.
  37. Luyendyk B (1995) Hypothesis for Cretaceous rifting of east Gondwana caused by subducted slab capture. Geology 23:373–376CrossRefGoogle Scholar
  38. Marenssi SA (2006) Eustatically controlled sedimentation recorded by Eocene strata of the James Ross Basin, Antarctica. Geol Soc London Spec Pub 258:125–133CrossRefGoogle Scholar
  39. Marsh OC (1889) Discovery of Cretaceous Mammalia. Amer J Sci 38(3):81–92CrossRefGoogle Scholar
  40. McMenamin MAS (2015) Paramphibia: a new class of tetrapods. Meanma Press, South Hadley/MassachusettsGoogle Scholar
  41. Meng Q-J et al (2017) New gliding mammaliaforms from the Jurassic. Nature.
  42. Mortimer N, Campbell H (2014) Zealandia: our continent revealed. Penguin Books, Auckland/New ZealandGoogle Scholar
  43. Mortimer N et al (2017) Zealandia: earth’s hidden continent. GSA Today 27(3–4):28–35Google Scholar
  44. O’Leary MA et al (2013) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339(6120):662–667CrossRefGoogle Scholar
  45. Pain R et al (2016) The upper dentition and relationships of the enigmatic Australian Cretaceous mammal Kollikodon ritchiei. Mem Mus Victoria 74:97–105CrossRefGoogle Scholar
  46. Pascual R et al (1992) First discovery of monotremes in South America. Nature 356:704–706CrossRefGoogle Scholar
  47. Polcyn MJ et al (2010) The North African mosasaur Globidens phosphaticus from the Maastrichtian of Angola. Historical Biol 22(1–3):175–185CrossRefGoogle Scholar
  48. Prevosti FJ et al (2013) The evolution of the Cenozoic terrestrial mammalian predator guild in South America: competition or replacement? J Mammalian Evol 20:3–21CrossRefGoogle Scholar
  49. de Ricqlès A, Bolt JR (1983) Jaw growth and tooth replacement in Captorhinus aguti (Reptilia: Captorhinomorpha): a morphological and histological analysis. J Vert Paleont 3(1):7–24CrossRefGoogle Scholar
  50. Sander PM, Faber C (2003) The Triassic marine reptile Omphalosaurus: osteology, jaw anatomy, and evidence for ichthyosaurian affinities. J Vert Paleont 23(4):799–816CrossRefGoogle Scholar
  51. Scott CS, Fox RC (2015) Review of Stagodontidae (Mammalia, Marsupialia) from the Judithian (late Cretaceous) Belly River group of southeastern Alberta, Canada. Can J Earth Sci 52:682–695CrossRefGoogle Scholar
  52. Simpson GG (1927) Mammalian fauna of the Hell Creek formation of Montana. Amer Mus Novitates 267:1–7Google Scholar
  53. Simpson GG (1980) Splendid isolation. The curious history of South American mammals. Yale Univerity Press, New HavenGoogle Scholar
  54. Sutherland R et al (2017) Extreme hydrothermal conditions at an active plate-bounding fault. Nature 546:137–140CrossRefGoogle Scholar
  55. Williams BA et al (2010) New perspectives on anthropoid origins. Proc Nat Acad Sci (USA) 107(11):4797–4804CrossRefGoogle Scholar
  56. Williamson T, Taylor L (2011) New species of Peradectes and Swaindelphys (Mammalia; Metatheria) from the early Paleocene (Torrejonian) Nacimiento formation, San Juan Basin New Mexico. Palaeontol Electron 14(3.23A):1–16Google Scholar
  57. Wilson GP et al (2016) A large carnivorous mammal from the late Cretaceous and the North American origin of marsupials. Nat Commun 7:13734. CrossRefGoogle Scholar
  58. Wise GE et al (2007) Bone formation as a potential motive force of tooth eruption in the rat molar. Clin Anat 20(6):632–639CrossRefGoogle Scholar
  59. Woodburne MO, Zinsmeister WJ (1982) Fossil land mammal from Antarctica. Science 218:284–286CrossRefGoogle Scholar
  60. Worthy TH et al (2006) Miocene mammal reveals a Mesozoic ghost lineage on insular New Zealand, southwest Pacific. Proc Nat Acad Sci (USA) 103(51):19419–19423CrossRefGoogle Scholar
  61. Yates AM (2015) New craniodental remains of Wakaleo alcootaensis (Diprotodontia: Thylacoleonidae) a carnivorous marsupial from the late Miocene Alcoota local fauna of Northern Territory, Australia. Peer J.
  62. Zachariasen J et al (2006) Timing of late Holocene surface rupture of the Wairau fault, Marlborough, New Zealand. N Z J Geol Geophys 49:159–174CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mark A. S. McMenamin
    • 1
  1. 1.Department of Geology and GeographyMount Holyoke CollegeSouth HadleyUSA

Personalised recommendations