A Tool for an Analysis of the Dynamic Behavior of Logistic Systems with the Instruments of Complex Networks

  • Thorben Funke
  • Till Becker
Conference paper
Part of the Lecture Notes in Logistics book series (LNLO)


It is known that the whole is more than the sum of its parts. In production for each machine a lot of information is available due to today’s integration of automatic data recording. In this context, one way of representing the whole is the modeling as a complex network. Yet, present complex network analysis tools can either not manage the amount of data of such systems or neglect their dynamic behavior. Therefore, we present a tool, which meets these requirements of the logistic field, and demonstrate its abilities for a real-world example.


  1. 1.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bastian, M., Heymann S., Jacomy M.: Gephi: an open source software for exploring and manipulating networks. In: International AAAI Conference on Weblogs and Social Media (2009).
  3. 3.
    Beber, M.E., Becker, T.: Towards an understanding of the relation between topological characteristics and dynamic behavior in manufacturing networks. Procedia CIRP 19, 21–26 (2014)., 2nd CIRP Robust Manufacturing Conference (RoMac 2014)CrossRefGoogle Scholar
  4. 4.
    Becker, T., Meyer, M., Windt, K.: A manufacturing systems network model for the evaluation of complex manufacturing systems. Int. J. Product. Perform. Manag. 63(3), 324–340 (2014). CrossRefGoogle Scholar
  5. 5.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bryan, D.L., O’Kelly, M.E.: Hub-and-spoke networks in air transportation: an analytical review. J. Reg. Sci. 39(2), 275–295 (1999). CrossRefGoogle Scholar
  7. 7.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz - open source graph drawing tools. In: International Symposium on Graph Drawing, pp. 483–484. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Hagberg, A., Swart, P., Schult, D.: Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Laboratory (LANL) (2008)Google Scholar
  10. 10.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001). CrossRefGoogle Scholar
  11. 11.
    Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002). CrossRefGoogle Scholar
  12. 12.
    Sayama, H.: Pycx: a python-based simulation code repository for complex systems education. Complex Adapt. Syst. Model. 1(1), 2 (2013). CrossRefGoogle Scholar
  13. 13.
    Sayama, H.: Introduction to the Modeling and Analysis of Complex Systems. Open SUNY Textbooks (2015)Google Scholar
  14. 14.
    Smith, M., Milic-Frayling, N., Shneiderman, B., Mendes Rodrigues, E., Leskovec, J., Dunne, C.: Nodexl: a free and open network overview, discovery and exploration add-in for excel 2007/2010 (2010)Google Scholar
  15. 15.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998).

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.BIBA - Bremer Institut für Produktion und Logistik GmbHUniversity of BremenBremenGermany
  2. 2.Faculty of Production EngineeringUniversity of BremenBremenGermany

Personalised recommendations