Statistical Inferences with Specification Tests



The author discusses the methodologies that are currently applied to empirical asset pricing models on asset returns, including up-to-date coverage on theoretical setting and model specification tests. For instance, factor analysis and (asymptotic) principal component analysis are provided for searching for these pricing cores or kernels of asset returns. Unfortunately, these earlier studies incur the difficulty of observability of these factors and of (economic) interpretation of the principal components. In essence, the application of multi-factor asset pricing models with observed/presumed factors becomes an alternative in the search for the systematic components of asset returns.


  1. Aldous, D. 1989. Probability Approximation via the Poisson Clumping Heuristic. New York: Springer.CrossRefGoogle Scholar
  2. Andrews, D.W.K. 1991. Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation. Econometrica 59: 817–858.CrossRefGoogle Scholar
  3. Back, K. 2010. Asset Pricing and Portfolio Choice Theory. Oxford: Oxford University Press.Google Scholar
  4. Black, F., M.C. Jensen, and M. Scholes. 1972. The Capital Asset Pricing Model: Some Empirical Tests. In Studies in the Theory of Capital Markets, 79–121. New York: Praeger.Google Scholar
  5. Bollerslev, T., R. Engle, and J. Wooldridge. 1988. A Capital Asset Pricing Model with Time-Varying Covariances. Journal of Political Economy 96: 116–131.CrossRefGoogle Scholar
  6. Burnside, C. 1994. Hansen-Jagannathan Bound as Classical Tests of Asset-Pricing Models. Journal of Business and Economic Statistics 12: 57–79.Google Scholar
  7. Chamberlain, G., and M. Rothschild. 1983. Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets. Econometrica 51: 1281–1304.CrossRefGoogle Scholar
  8. Connor, G., and R. Korajczyk. 1993. A Test for the Number of Factors in an Approximate Factor Model. Journal of Finance 48: 1263–1291.CrossRefGoogle Scholar
  9. Fama, E.F., and K.R. French. 1993. Common Risk Factors in the Returns on Stocks and Bonds. Journal of Financial Economics 25: 23–49.CrossRefGoogle Scholar
  10. Fama, E.F., and J.D. MacBeth. 1973. Risk, Return and Equilibrium: Empirical Tests. Journal of Political Economy 81: 607–636.CrossRefGoogle Scholar
  11. Ferson, W.E., and A.F. Siegel. 2001. The Efficient Use of Conditional Information in Portfolios. Journal of Finance 56: 967–982.CrossRefGoogle Scholar
  12. Ferson, W.E., and A.F. Siegel. 2003. Stochastic Discount Factor Bounds with Conditioning Information. Review of Financial Studies 16: 567–595.CrossRefGoogle Scholar
  13. Gallant, A.R., L.P. Hansen, and G. Tauchen. 1990. Using Conditional Moments of Asset Payoffs to Infer the Volatility of Intertemporal Marginal Rate of Substitution. Journal of Econometrics 45: 141–179.CrossRefGoogle Scholar
  14. Goyal, A., and I. Welch. 2003. Predicting the Equity Premium with Dividend Ratios. Management Science 49: 639–654.CrossRefGoogle Scholar
  15. Hansen, L.P., and R. Jagannathan. 1991. Implications of Security Market Data for Models of Dynamic Economies. Journal of Political Economy 99: 225–262.CrossRefGoogle Scholar
  16. Ingersoll, J. 1984. Some Results in the Theory of Arbitrage Pricing. Journal of Finance 39: 1021–1039.CrossRefGoogle Scholar
  17. Jagannathan, R., and Z. Wang. 1996. The Conditional CAPM and the Cross-Section of Expected Returns. Journal of Finance 51: 3–53.CrossRefGoogle Scholar
  18. Jagannathan, R., and Z. Wang. 1998. An Asymptotic Theory for Estimating Beta-Pricing Models using Cross-Sectional Regression. Journal of Finance 53: 1285–1309.CrossRefGoogle Scholar
  19. Jagannathan, R., and Z. Wang. 2002. Empirical Evaluation of Asset-Pricing Models: A Comparison of the SDF and Beta Methods. Journal of Finance 57: 2337–2367.CrossRefGoogle Scholar
  20. Kan, R., and C. Robotti. 2009. Model Comparison Using Hansen-Jagnnathan Distance. Review of Financial Studies 22: 3449–3490.CrossRefGoogle Scholar
  21. Kan, R., and G. Zhou. 1999. A Critique of the Stochastic Discount Factor Methodology. Journal of Finance 54: 1221–1248.CrossRefGoogle Scholar
  22. Kan, R., and G. Zhou. 2006. A New Variance Bound on the Stochastic Discount Factor. Journal of Business 79: 941–961.CrossRefGoogle Scholar
  23. Lawrenz, J. 2013. Time-Series Properties of the Dividend-Price Ratio with Social Dynamics. Applied Economics 45: 569–579.CrossRefGoogle Scholar
  24. Lewellen, J., S. Nagel, and J. Shanken. 2010. A Skeptical Appraisal of Asset Pricing Tests. Journal of Financial Economics 96: 175–194.CrossRefGoogle Scholar
  25. Lo, A.W., and A.C. MacKinlay. 1990. Data Snooping Biases in Tests of Financial Asset Pricing Models. Review of Financial Studies 3: 431–467.CrossRefGoogle Scholar
  26. Newey, W.K., and K.D. West. 1987. A Simple Positive Semi-Definite Heteroske- dasticity and Autocorrelation Consistent Covariance Matrix. Econometrica 55: 703–708.CrossRefGoogle Scholar
  27. Onatski, A. 2009. Testing Hypotheses About the Number of Factors in Large Factor Models. Econometrica 77: 1447–1479.CrossRefGoogle Scholar
  28. Onatski, A. 2010. Determining the Number of Factors from Empirical Distribution of Eigenvalues. The Review of Economics and Statistics 92: 1004–1016.CrossRefGoogle Scholar
  29. Shanken, J. 1992. On the Estimation of Beta-Pricing Models. Review of Financial Studies 5: 1–33.CrossRefGoogle Scholar
  30. Shanken, J., and G. Zhou. 2007. Estimating and Testing Beta Pricing Models: Alternative Methods and Their Performance in Simulations. Journal of Financial Economics 84: 40–86.CrossRefGoogle Scholar
  31. Tinic, S.M., and R.R. West. 1986. Risk, Return and Equilibrium: A Revisit. Journal of Political Economy 94: 126–147.CrossRefGoogle Scholar
  32. Yang, S.S. 1977. General Distribution Theory of the Concomitants of Order Statistics. Annals of Statistics 5: 996–1002.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of Business and ManagementAzusa Pacific UniversityStevenson RanchUSA

Personalised recommendations