Skip to main content

Finite Element Analysis Applications in Biomechanical Studies of the Knee Joint

  • Chapter
  • First Online:
  • 1370 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The development of sophisticated 3D FE models through MRI techniques enables us to precisely capture the patient-specific geometries of both hard and soft tissues in the region of interest (RoI), in order to more precisely simulate complicated tissue responses, thereby reflecting more realistic biomechanical behaviors. In the past decades, extensive studies have developed FE models and have coupled the FE model with in vivo kinematic data to analyse true tissue deformation (Halloran et al. in J Biomech 43:2810–2815, 2010). This has resulted in a more convincing simulation and prediction of the loading condition in FEA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aalbersberg, S., et al. (2005). Orientation of tendons in vivo with active and passive knee muscles. Journal of Biomechanics, 38(9), 1780–1788.

    Article  Google Scholar 

  • Adouni, M., Shirazi-Adl, A., & Shirazi, R. (2012). Computational biodynamics of human knee joint in gait: From muscle forces to cartilage stresses. Journal of Biomechanics, 45(12), 2149–2156.

    Article  Google Scholar 

  • Ali, A. A., et al. (2016). Validation of predicted patellofemoral mechanics in a finite element model of the healthy and cruciate-deficient knee. Journal of Biomechanics, 49(2), 302–309.

    Article  Google Scholar 

  • Bae, J. Y., et al. (2012). Biomechanical analysis of the effects of medial meniscectomy on degenerative osteoarthritis. Medical & Biological Engineering & Computing, 50(1), 53–60.

    Article  MathSciNet  Google Scholar 

  • Baldwin, M. A., et al. (2012). Dynamic finite element knee simulation for evaluation of knee replacement mechanics. Journal of Biomechanics, 45(3), 474–483.

    Article  Google Scholar 

  • Beillas, P., et al. (2004). A new method to investigate in vivo knee behavior using a finite element model of the lower limb. Journal of Biomechanics, 37(7), 1019–1030.

    Article  Google Scholar 

  • Bendjaballah, M. Z., Shirazi-Adl, A., & Zukor, D. J. (1997). Finite element analysis of human knee joint in varus-valgus. Clinical Biomechanics, 12(3), 139–148.

    Article  Google Scholar 

  • Burkhart, T. A., Andrews, D. M., & Dunning, C. E. (2013). Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics, 46(9), 1477–1488.

    Article  Google Scholar 

  • Delp, S. L., et al. (2007). OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54(11), 1940–1950.

    Article  Google Scholar 

  • Dhaher, Y. Y., Kwon, T.-H., & Barry, M. (2010). The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions. Journal of Biomechanics, 43(16), 3118–3125.

    Article  Google Scholar 

  • Donahue, T. L. H., et al. (2002). A finite element model of the human knee joint for the study of tibio-femoral contact. Journal of Biomechanical Engineering, 124(3), 273–280.

    Article  Google Scholar 

  • Ellis, B. J., et al. (2006). Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. Journal of Orthopaedic Research, 24(4), 800–810.

    Article  Google Scholar 

  • Erdemir, A. (2013). Open knee: A pathway to community driven modeling and simulation in joint biomechanics. Journal of Medical Devices, 7(4), 40910.

    Article  Google Scholar 

  • Erdemir, A. (2016). Open knee: Open source modeling and simulation in knee biomechanics. Journal of Knee Surgery, 29(2), 107–116.

    Google Scholar 

  • Fernandes, D. J. C. (2014). Finite element analysis of the ACL-deficient Knee.

    Google Scholar 

  • Fukubayashi, T., & Kurosawa, H. (1980). The contact area and pressure distribution pattern of the knee: A study of normal and osteoarthrotic knee joints. Acta Orthopaedica Scandinavica, 51(1–6), 871–879.

    Article  Google Scholar 

  • Gardiner, J. C., & Weiss, J. A. (2003). Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. Journal of Orthopaedic Research, 21(6), 1098–1106.

    Article  Google Scholar 

  • Gasser, T. C., Ogden, R. W., & Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society, Interface, 3(6), 15–35.

    Article  Google Scholar 

  • Godest, A. C., et al. (2002). Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. Journal of Biomechanics, 35(2), 267–275.

    Article  Google Scholar 

  • Guess, T. M., et al. (2010). A subject specific multibody model of the knee with menisci. Medical Engineering & Physics, 32(5), 505–515.

    Article  Google Scholar 

  • Halloran, J. P., Petrella, A. J., & Rullkoetter, P. J. (2005). Explicit finite element modeling of total knee replacement mechanics. Journal of Biomechanics, 38(2), 323–331.

    Article  Google Scholar 

  • Halloran, J. P., et al. (2010). Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading. Journal of Biomechanics, 43(14), 2810–2815.

    Article  Google Scholar 

  • Halonen, K. S., et al. (2013). Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage—A 3D finite element study of stresses and strains in human knee joint. Journal of Biomechanics, 46(6), 1184–1192.

    Article  Google Scholar 

  • Hirokawa, S., & Tsuruno, R. (2000). Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. Journal of Biomechanics, 33(9), 1069–1077.

    Article  Google Scholar 

  • Kiapour, A. M., et al. (2014). The effect of ligament modeling technique on knee joint kinematics: a finite element study. Applied mathematics, 4(5A), 91.

    Google Scholar 

  • Li, G., Suggs, J., & Gill, T. (2002). The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: A three-dimensional computational simulation. Annals of Biomedical Engineering, 30(5), 713–720.

    Article  Google Scholar 

  • Li, G., et al. (1999). A validated three-dimensional computational model of a human knee joint. Journal of Biomechanical Engineering, 121(6), 657–662.

    Article  Google Scholar 

  • Limbert, G., Middleton, J., & Taylor, M. (2004). Finite element analysis of the human ACL subjected to passive anterior tibial loads. Computer Methods in Biomechanics and Biomedical Engineering, 7(1), 1–8.

    Article  Google Scholar 

  • Łuczkiewicz, P., et al. (2016). The influence of articular cartilage thickness reduction on meniscus biomechanics. PLoS One, 11(12), e0167733.

    Article  Google Scholar 

  • Marlow, R. S. (2003). A general first-invariant hyperelastic constitutive model. Constitutive Models for Rubber, 157–160.

    Google Scholar 

  • Meakin, J. R., et al. (2003). Finite element analysis of the meniscus: The influence of geometry and material properties on its behaviour. The Knee, 10(1), 33–41.

    Article  Google Scholar 

  • Moglo, K. E., & Shirazi-Adl, A. (2003). Biomechanics of passive knee joint in drawer: Load transmission in intact and ACL-deficient joints. The Knee, 10(3), 265–276.

    Article  Google Scholar 

  • Mononen, M. E., et al. (2012). Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics—A 3D finite element analysis. Journal of Biomechanics, 45(3), 579–587.

    Article  Google Scholar 

  • Mootanah, R., et al. (2014). Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis. Computer Methods in Biomechanics and Biomedical Engineering, 17(13), 1502–1517.

    Article  Google Scholar 

  • Park, H.-S., et al. (2010). A knee-specific finite element analysis of the human anterior cruciate ligament impingement against the femoral intercondylar notch. Journal of Biomechanics, 43(10), 2039–2042.

    Article  Google Scholar 

  • Peña, E., Calvo, B., et al. (2005). Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clinical Biomechanics, 20(5), 498–507.

    Article  Google Scholar 

  • Peña, E., et al. (2006a). A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of Biomechanics, 39(9), 1686–1701.

    Article  Google Scholar 

  • Peña, E., et al. (2006b). Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study. Journal of Orthopaedic Research, 24(5), 1001–1010.

    Article  Google Scholar 

  • Peña, E., et al. (2007). Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation. Computers in Biology and Medicine, 37(3), 376–387.

    Article  Google Scholar 

  • Peña, E., et al. (2008). Computer simulation of damage on distal femoral articular cartilage after meniscectomies. Computers in Biology and Medicine, 38(1), 69–81.

    Article  Google Scholar 

  • Penrose, J. M. T., et al. (2002). Development of an accurate three-dimensional finite element knee model. Computer Methods in Biomechanics & Biomedical Engineering, 5(4), 291–300.

    Article  Google Scholar 

  • Pioletti, D. P., et al. (1998). Viscoelastic constitutive law in large deformations: Application to human knee ligaments and tendons. Journal of Biomechanics, 31(8), 753–757.

    Article  Google Scholar 

  • Ramaniraka, N. A., Terrier, A., et al. (2005). Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clinical Biomechanics, 20(4), 434–442.

    Article  Google Scholar 

  • Ramaniraka, N. A., et al. (2007). Biomechanical evaluation of intra-articular and extra-articular procedures in anterior cruciate ligament reconstruction: a finite element analysis. Clinical Biomechanics, 22(3), 336–343.

    Article  Google Scholar 

  • Sakai, N., et al. (1996). Quadriceps forces and patellar motion in the anatomical model of the patellofemoral joint. The Knee, 3(1–2), 1–7.

    Article  Google Scholar 

  • Sathasivam, S., & Walker, P. S. (1997). A computer model with surface friction for the prediction of total knee kinematics. Journal of Biomechanics, 30(2), 177–184.

    Article  Google Scholar 

  • Segal, N. A., et al. (2009). Baseline articular contact stress levels predict incident symptomatic knee osteoarthritis development in the MOST cohort. Journal of Orthopaedic Research, 27(12), 1562–1568.

    Article  Google Scholar 

  • Smith, C. R., et al. (2016). The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement. Journal of Biomechanical Engineering, 138(2), 21017.

    Article  Google Scholar 

  • Song, Y., et al. (2004). A three-dimensional finite element model of the human anterior cruciate ligament: A computational analysis with experimental validation. Journal of Biomechanics, 37(3), 383–390.

    Article  Google Scholar 

  • Tanska, P., Mononen, M. E., & Korhonen, R. K. (2015). A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking. Journal of Biomechanics, 48(8), 1397–1406.

    Article  Google Scholar 

  • Wan, C., Hao, Z., & Wen, S. (2013). The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: A finite element study. Journal of Biomechanical Engineering, 135(4), 41002.

    Article  Google Scholar 

  • Wang, Y., Fan, Y., & Zhang, M. (2014). Comparison of stress on knee cartilage during kneeling and standing using finite element models. Medical Engineering & Physics, 36(4), 439–447.

    Article  Google Scholar 

  • Xie, F., et al. (2009). A study on construction three-dimensional nonlinear finite element model and stress distribution analysis of anterior cruciate ligament. Journal of Biomechanical Engineering, 131(12), 121007.

    Article  Google Scholar 

  • Yao, J., Funkenbusch, P. D., et al. (2006a). Sensitivities of medial meniscal motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods. Journal of Biomechanical Engineering, 128(3), 399–408.

    Article  Google Scholar 

  • Yao, J., Snibbe, J., et al. (2006b). Stresses and strains in the medial meniscus of an ACL deficient knee under anterior loading: A finite element analysis with image-based experimental validation. Journal of Biomechanical Engineering, 128(1), 135–141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Manuel R. S. Tavares .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trad, Z., Barkaoui, A., Chafra, M., Tavares, J.M.R.S. (2018). Finite Element Analysis Applications in Biomechanical Studies of the Knee Joint . In: FEM Analysis of the Human Knee Joint. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-74158-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74158-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74157-4

  • Online ISBN: 978-3-319-74158-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics