Comparative Study of Tongue Surface Microstructure and Its Possible Functional Significance in Frogs

Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 10)

Abstract

Frogs (Lissamphibia: Anura) use adhesive tongues to capture fast moving, elusive prey. For this, the tongues are moved quickly and adhere instantaneously to various prey surfaces. Recently, the functional morphology of frog tongues was discussed in context of their adhesive performance. It was suggested that the interaction between the tongue surface and the mucus coating is important for generating strong pull-off forces. However, despite the general notions about its importance for a successful contact with the prey, little is known about the surface structure of frog tongues. Previous studies focused almost exclusively on species within the Ranidae and Bufonidae, neglecting the wide diversity of frogs. Here we examined the tongue surface in nine different frog species, comprising eight different taxa, i.e., the Alytidae, Bombinatoridae, Megophryidae, Hylidae, Ceratophryidae, Ranidae, Bufonidae, and Dendrobatidae. In all species examined herein, we found fungiform and filiform papillae on the tongue surface. Further, we observed a high degree of variation among tongues in different frogs. These differences can be seen in the size and shape of the papillae, in the fine-structures on the papillae, as well as in the three-dimensional organization of subsurface tissues. Notably, the fine-structures on the filiform papillae in frogs comprise hair-like protrusions (Megophryidae and Ranidae), microridges (Bufonidae and Dendrobatidae), or can be irregularly shaped or absent as observed in the remaining taxa examined herein. Some of this variation might be related to different degrees of adhesive performance and may point to differences in the spectra of prey items between frog taxa.

Notes

Acknowledgements

This book chapter is adapted from the publication Kleinteich T. and Gorb S.N. (2016) Frog tongue surface microstructures: functional and evolutionary patterns, Beilstein J. Nanotechnol. 7, 893–903, doi: 10.3762/bjnano.7.81. We wish to thank the members of the Functional Morphology and Biomechanics group at Kiel University for numerous insightful discussions on adhesion in biological systems. The help of Esther Appel and Joachim Oesert in preparing the specimens for scanning electron microscopy is much appreciated. We are grateful for the support by Alexander Haas and Jakob Hallermann from the Centre of Natural History and Zoological Museum in Hamburg who provided specimens and granted permission to dissect the tongues from the museums specimens examined herein. TK was supported by the German Research Foundation (DFG grant KL2707/2-1).

References

  1. AmphibiaWeb. http://www.amphibiaweb.org. Accessed 2 Mar 2016.
  2. Barnes, W. J. P., Baum, M., Peisker, H., & Gorb, S. N. (2013). Comparative Cryo-SEM and AFM studies of hylid and rhacophorid tree frog toe pads. Journal of Morphology, 274, 1384–1396.CrossRefPubMedGoogle Scholar
  3. Crnobrnja-Isailović, J., Ćurčić, S., Stojadinović, D., Tomašević-Kolarov, N., Aleksić, I., & Tomanović, Ž. (2012). Diet composition and food preferences in adult common toads (Bufo bufo) (Amphibia: Anura: Bufonidae). Journal of Herpetology, 46, 562–567.CrossRefGoogle Scholar
  4. Deban, S. M., & Nishikawa, K. C. (1992). The kinematics of prey capture and the mechanism of tongue protraction in the Green Tree Frog Hyla cinerea. The Journal of Experimental Biology, 170, 235–256.Google Scholar
  5. Duellman, W. E., & Lizana, M. (1994). Biology of a sit-and-wait predator, the leptodactylid frog Ceratophrys cornuta. Herpetologica, 50, 51–64.Google Scholar
  6. Elsheikh, E. H., Atta, K. E., & Al-Zahaby, S. A. (2013). Comparative study on the tongue of Bufo regularis and Chalcides ocellatus in relation to their habitats. The Journal of Basic & Applied Zoology, 66, 131–138.CrossRefGoogle Scholar
  7. Emerson, S. B. (1977). Movement of the hyoid in frogs during feeding. The American Journal of Anatomy, 149, 115–120.CrossRefPubMedGoogle Scholar
  8. Emerson, S. B. (1985). Skull shape in frogs: Correlations with diet. Herpetologica, 41, 177–188.Google Scholar
  9. Eşrefoğlu, M., Temelli, A., & Eşrefoğlu, M. (2000). Fine structure of the dorsal lingual epithelium of the frog, Rana ridibunda. Journal of Inonu University Medical Faculty, 7, 67–72.Google Scholar
  10. Frost, D. R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C. F. B., de Sá, R. O., Channing, A., Wilkinson, M., Donnellan, S. C., Raxworthy, C. J., Campbell, J. A., Blotto, B. L., Moler, P., Drewes, R. C., Nussbaum, R. A., Lynch, J. D., Green, D. M., & Wheeler, W. C. (2006). The amphibian tree of life. Bulletin of the American Museum of Natural History, 297, 1–370.CrossRefGoogle Scholar
  11. Gans, C., & Gorniak, G. C. (1982a). Functional morphology of lingual protrusion in marine toads (Bufo marinus). The American Journal of Anatomy, 163, 195–222.CrossRefPubMedGoogle Scholar
  12. Gans, C., & Gorniak, G. C. (1982b). How does the toad flip its tongue? Test of two hypotheses. Science, 216, 1335–1337.CrossRefPubMedGoogle Scholar
  13. Gilman, C. A., Imburgia, M. J., Bartlett, M. D., King, D. R., Crosby, A. J., & Irschick, D. J. (2015). Geckos as springs: Mechanics explains across-species scaling of adhesion. PLoS One, 10, e0134604.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gorb, S. N., & Filippov, A. E. (2014). Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects. Beilstein Journal of Nanotechnology, 5, 837–845.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Guiraldelli, M. F., Lopes, R. A., Sala, M. A., & Lopes, T. R. V. P. (2011). Morphological, morphometrical and histochemical study of the lining and glandular epithelia of the tongue of the bullfrog Rana catesbeiana. International Journal of Morphology, 29, 226–233.CrossRefGoogle Scholar
  16. Helff, O., & Mellicker, M. (1941a). Studies on amphibian metamorphosis. XIX. Development of the tongue in Rana sylvatica, including the histogenesis of “premetamorphic” and filiform papillae and the mucous glands. The American Journal of Anatomy, 68, 339–369.CrossRefGoogle Scholar
  17. Helff, O. M., & Mellicker, M. C. (1941b). Studies on amphibian metamorphosis. XX. Development of the fungiform papillae of the tongue in Rana sylvatica. The American Journal of Anatomy, 68, 371–395.CrossRefGoogle Scholar
  18. Iwasaki, S. (2002). Evolution of the structure and function of the vertebrate tongue. Journal of Anatomy, 201, 1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Iwasaki, S., & Kobayashi, K. (1988). Fine structure of the dorsal tongue surface in the japanese toad, Bufo japonicus (Anura, Bufonidae). Zoological Science, 5, 331–336.Google Scholar
  20. Iwasaki, S., & Wanichanon, C. (1991). Fine structure of the dorsal lingual epithelium of the frog, Rana rugosa. Tissue and Cell, 23, 385–391.CrossRefPubMedGoogle Scholar
  21. Iwasaki, S., & Wanichanon, C. (1993). An ultrastructural study of the dorsal lingual epithelium of the crab-eating frog, Rana cancrivora. Journal of Morphology, 215, 89–100.CrossRefPubMedGoogle Scholar
  22. Iwasaki, S., Miyata, K., & Kobayashi, K. (1989). Fine structure of the lingual dorsal epithelium of the japanese toad, Bufo japonicus (Anura: Bufonidae). Zoological Science, 6, 681–689.Google Scholar
  23. Iwasaki, S., Iwabuchi, Y., & Asami, T. (1997). Histological and ultrastructural study of the effects of cholinergic and adrenergic agonists on salivary secretion from the lingual epithelium and the lingual gland of the Tokyo Daruma pond frog. Tissue and Cell, 29, 323–338.CrossRefPubMedGoogle Scholar
  24. Iwasaki, S., Iwabuchi, Y., & Okumura, Y. (1998). Histological and ultrastructural studies of the effects of tachykinins on protein secretion from the lingual epithelium and the lingual gland of the Tokyo daruma pond frog (Rana porosa porosa). Archives of Oral Biology, 43, 463–471.CrossRefPubMedGoogle Scholar
  25. Jaeger, C. B., & Hillman, D. E. (1976). Morphology of gustatory organs. In R. Llinás & W. Precht (Eds.), Frog neurobiology (pp. 588–606). Heidelberg: Springer.CrossRefGoogle Scholar
  26. Kleinteich, T. (2015). To have a frog in the throat: Micro-CT imaging of anuran prey in Ceratophrys ornata (Anura: Ceratophryidae). Salamandra, 51, 209–211.Google Scholar
  27. Kleinteich, T., & Gorb, S. N. (2014). Tongue adhesion in the horned frog Ceratophrys sp. Scientific Reports, 4, 5225.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kleinteich, T., & Gorb, S. N. (2015). Frog tongue acts as muscle-powered adhesive tape. Royal Society Open Science, 2, 150333.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kleinteich, T., & Gorb, S. N. (2016). Frog tongue surface microstructures: Functional and evolutionary patterns. Beilstein Journal of Nanotechnology, 7, 893–903.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Metscher, B. D. (2009). MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology, 9, 11.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nishikawa, K. C. (2000). Feeding in frogs. In K. Schwenk (Ed.), Feeding: Form, function, and evolution in tetrapod vertebrates (pp. 117–147). London: Academic Press.CrossRefGoogle Scholar
  32. Nishikawa, K. C., & Gans, C. (1996). Mechanisms of tongue protraction and narial closure in the marine toad Bufo marinus. The Journal of Experimental Biology, 199, 2511–2529.PubMedGoogle Scholar
  33. Ojima, K., Takeda, M., Saiki, C., Takahashi, T., & Matsumoto, S. (1997). Angioarchitectural classification of the fungiform papillae on the dorsal surface of the bullfrog tongue. Annals of Anatomy – Anatomischer Anzeiger, 179, 393–397.Google Scholar
  34. Osculati, F., & Sbarbati, A. (1995). The frog taste disc: A prototype of the vertebrate gustatory organ. Progress in Neurobiology, 46, 351–399.CrossRefPubMedGoogle Scholar
  35. Parsons, C. W. (1932). Habits of the toad, Ceratophrys. Nature, 130, 279–279.CrossRefGoogle Scholar
  36. Peisker, H., Michels, J., & Gorb, S. N. (2013). Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nature Communications, 4, 1661.CrossRefPubMedGoogle Scholar
  37. Perez Goodwyn, P., Peressadko, A., Schwarz, H., Kastner, V., & Gorb, S. (2006). Material structure, stiffness, and adhesion: Why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera). Journal of Comparative Physiology. A, 192, 1233–1243.CrossRefGoogle Scholar
  38. Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61, 543–583.CrossRefPubMedGoogle Scholar
  39. Regal, P. J., & Gans, C. (1976). Functional aspects of the evolution of frog tongues. Evolution, 30, 718–734.CrossRefPubMedGoogle Scholar
  40. Ritter, D., & Nishikawa, K. C. (1995). The kinematics and mechanism of prey capture in the African pig-nosed frog (Hemisus marmoratum): Description of a radically divergent anuran tongue. The Journal of Experimental Biology, 198, 2025–2040.PubMedGoogle Scholar
  41. Roelants, K., Gower, D. J., Wilkinson, M., Loader, S. P., Biju, S. D., Guillaume, K., Moriau, L., & Bossuyt, F. (2007). Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences of the United States of America, 104, 887–892.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Santana, A. S., & Juncá, F. A. (2007). Diet of Physalaemus cf. cicada (Leptodactylidae) and Bufo granulosus (Bufonidae) in a semideciduous forest. Brazilian Journal of Biology, 67, 125–131.CrossRefGoogle Scholar
  43. Silva, N. R., Souza, P. R., Gonçalves, M. F., Demétrio, M. F., & Prado, C. P. A. (2014). A voracious female during the courtship of Ceratophrys cranwelli (Anura: Ceratophryidae) in the Brazilian Chaco. Herpetology Notes, 7, 93–95.Google Scholar
  44. Sperry, D. G., & Wassersug, R. J. (1976). A proposed function for microridges on epithelial cells. The Anatomical Record, 185, 253–257.CrossRefPubMedGoogle Scholar
  45. Stensaas, L. J. (1971). The fine structure of fungiform papillae and epithelium of the tongue of a South American toad, Calyptocephalella gayi. The American Journal of Anatomy, 131, 443–461.CrossRefPubMedGoogle Scholar
  46. Wells, K. D. (2010). The ecology and behavior of amphibians (1400 p). Chicago: University of Chicago Press.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Functional Morphology and Biomechanics, Zoological InstituteKiel UniversityKielGermany

Personalised recommendations