Advertisement

Visualization of the Number of Tarsal Adhesive Setae Used During Normal and Ceiling Walk in a Ladybird Beetle: A Case Study

  • Lars Heepe
  • Constanze Grohmann
  • Stanislav N. Gorb
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 10)

Abstract

The hairy attachment devices of climbing animals consist of hundreds to billions of micro- to nanoscopic adhesive setae which can form an intimate contact with the substrate and thus allow for sufficient adhesion to walk on vertical walls or even on the ceiling. In previous studies, the combination of microscopic visualization of the pad morphology and adhesive force measurements at the level of individual setae aided in the estimation of the maximum adhesive capability of different animals by assuming all setae being in contact with the substrate. These estimates, however, did not necessarily coincide with adhesion measurements performed at the level of the whole animal. We hypothesize that this discrepancy may arise due the fact that not all setae are simultaneously applied during locomotion. To test this hypothesis, we visualized the number of adhesive setae used during normal and ceiling walk in a ladybird beetle. We found that ladybird beetles had significantly more setae in contact with a smooth substrate during ceiling walk than during normal walk. Moreover, during ceiling walk mainly spatula-shaped setae were used during locomotion, which are expected to provide high adhesive forces.

Notes

Acknowledgements

We would like to thank Felix Schönmuth and Alexander Massing for their help with the acquisition of video sequences and sequence analysis and Bastian Poerschke for his assistance in the data analysis.

References

  1. Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., Fearing, R., & Full, R. J. (2000). Adhesive force of a single gecko foot-hair. Nature, 405, 681–685.CrossRefPubMedGoogle Scholar
  2. Autumn, K., Dittmore, A., Santos, D., Spenko, M., & Cutkosky, M. (2006). Frictional adhesion: A new angle on gecko attachment. The Journal of Experimental Biology, 209, 3569–3579.CrossRefPubMedGoogle Scholar
  3. Bullock, J. M., & Federle, W. (2009). Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: Effective elastic modulus and attachment performance. The Journal of Experimental Biology, 212, 1876–1888.CrossRefPubMedGoogle Scholar
  4. Bullock, J. M., & Federle, W. (2011). Beetle adhesive hairs differ in stiffness and stickiness: In vivo adhesion measurements on individual setae. Naturwissenschaften, 98, 381–387.CrossRefPubMedGoogle Scholar
  5. Bußhardt, P., Wolf, H., & Gorb, S. N. (2012). Adhesive and frictional properties of tarsal attachment pads in two species of stick insects (Phasmatodea) with smooth and nubby euplantulae. Zoology, 115, 135–141.CrossRefPubMedGoogle Scholar
  6. Federle, W., Riehle, M., Curtis, A. S., & Full, R. J. (2002). An integrative study of insect adhesion: Mechanics and wet adhesion of pretarsal pads in ants. Integrative and Comparative Biology, 42, 1100–1106.CrossRefPubMedGoogle Scholar
  7. Gorb, S. N. (1998). The design of the fly adhesive pad: Distal tenent setae are adapted to the delivery of an adhesive secretion. Proceedings of the Royal Society B, 265, 747–752.CrossRefPubMedCentralGoogle Scholar
  8. Gorb, S. N. (2001). Attachment devices of insect cuticle. Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  9. Gorb, S. N., & Heepe, L. (2018). Biological fibrillar adhesives: Functional principles and biomimetic applications. In L. F. M. da Silva, A. Oechner, & R. Adams (Eds.), Handbook of adhesion technology (Vol. 2). Berlin: Springer.Google Scholar
  10. Gorb, E. V., Hosoda, N., Miksch, C., & Gorb, S. N. (2010). Slippery pores: Anti-adhesive effect of nanoporous substrates on the beetle attachment system. Journal of the Royal Society Interface, 7, 1571–1579.CrossRefPubMedCentralGoogle Scholar
  11. Grohmann, C., Henze, M. J., Nørgaard, T., & Gorb, S. N. (2015). Two functional types of attachment pads on a single foot in the Namibia bush cricket Acanthoproctus diadematus (Orthoptera: Tettigoniidae). Proceedings of the Royal Society B, 282, 20142976.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Heepe, L., Kovalev, A. E., & Gorb, S. N. (2014). Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure. Beilstein Journal of Nanotechnology, 5, 903–909.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Heepe, L., Wolff, J. O., & Gorb, S. N. (2016). Influence of ambient humidity on the attachment ability of ladybird beetles (Coccinella septempunctata). Beilstein Journal of Nanotechnology, 7, 1332–1329.CrossRefGoogle Scholar
  14. Heepe, L., Raguseo, S., & Gorb, S. N. (2017). An experimental study of double-peeling mechanism inspired by biological adhesive systems. Applied Physics A: Materials Science & Processing, 123, 124.CrossRefGoogle Scholar
  15. Hiller, U. (1968). Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Zoomorphology, 62, 307–362.Google Scholar
  16. Huber, G., Gorb, S. N., Spolenak, R., & Arzt, E. (2005a). Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biology Letters, 1, 2–4.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Huber, G., Mantz, H., Spolenak, R., Mecke, K., Jacobs, K., Gorb, S. N., & Arzt, E. (2005b). Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proceedings of the National Academy of Sciences of the United States of America, 102, 16293–16296.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Irschick, D. J., Austin, C. C., Petren, K., Fisher, R. N., Losos, J. B., & Ellers, O. (1996). A comparative analysis of clinging ability among pad-bearing lizards. Biological Journal of the Linnean Society, 59, 21–35.CrossRefGoogle Scholar
  19. Kesel, A. B., Martin, A., & Seidl, T. (2003). Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. The Journal of Experimental Biology, 206, 2733–2738.CrossRefPubMedGoogle Scholar
  20. Labonte, D., & Federle, W. (2013). Functionally different pads on the same foot allow control of attachment: Stick insects have load-sensitive “heel” pads for friction and shear-sensitive “toe” pads for adhesion. PLoS One, 8, e81943.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ploem, J. S. (1975). Reflection-contrast microscopy as a tool for investigation of the attachment of living cells to a glass surface. In R. van Furth (Ed.), Mononuclear phagocytes in immunity, infection and pathology (pp. 405–421). Oxford: Blackwell.Google Scholar
  22. Pugno, N. M. (2011). The theory of multiple peeling. International Journal of Fracture, 171, 185–193.CrossRefGoogle Scholar
  23. Pugno, N., Lepore, E., Toscano, S., & Pugno, F. (2011). Normal adhesive force-displacement curves of living geckos. The Journal of Adhesion, 87, 1059–1072.CrossRefGoogle Scholar
  24. Puthoff, J. B., Prowse, M. S., Wilkinson, M., & Autumn, K. (2010). Changes in materials properties explain the effects of humidity on gecko adhesion. The Journal of Experimental Biology, 213, 3699–3704.CrossRefPubMedGoogle Scholar
  25. Varenberg, M., Pugno, N. M., & Gorb, S. N. (2010). Spatulate structures in biological fibrillar adhesion. Soft Matter, 6, 3269–3272.CrossRefGoogle Scholar
  26. Wohlfart, E., Wolff, J. O., Arzt, E., & Gorb, S. N. (2014). The whole is more than the sum of all its parts: collective effect of spider attachment organs. The Journal of Experimental Biology, 217, 222–224.CrossRefPubMedGoogle Scholar
  27. Wolff, J. O., & Gorb, S. N. (2016). Attachment structures and adhesive secretions in arachnids. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Lars Heepe
    • 1
  • Constanze Grohmann
    • 1
  • Stanislav N. Gorb
    • 1
  1. 1.Department of Functional Morphology and Biomechanics, Zoological InstituteKiel UniversityKielGermany

Personalised recommendations