Advertisement

Examples of Bioadhesives for Defence and Predation

  • Janek von Byern
  • Carsten Müller
  • Karin Voigtländer
  • Victoria Dorrer
  • Martina Marchetti-Deschmann
  • Patrick Flammang
  • Georg Mayer
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 10)

Abstract

Bioadhesives are widely used in nature, not only for settlement but also for defence, prey capture, nest construction or mobility. These glues are superbly adapted in terms of chemical composition and biomechanical properties to the requirements of those organisms producing them. More than 100 marine and terrestrial organisms are known to produce adhesives, some of them since 500 million years. However, only little is known about the composition, production, secretion mechanisms and mechanical properties of the vast majority of these glues.

Attaching to a substratum, as done by bacteria, plants and animals, surely is the most common function of bioadhesives and has been extensively described in various organisms such as mussels, acorn barnacles, sandcastle worms or slugs.

This chapter focuses on animals that use adhesive secretions for defence and predation, as these functions require specialized behaviours and adhesive properties, such as fast curing process in the millisecond range, squirting over distance, protection against own glue, or bonding to various sorts of substrata with varying surface chemistry or texture. The depicted organisms cover a large environmental and phylogenetic diversity. In addition to marine animals such as hagfish and comb jellies, many terrestrial species like centipedes, salamanders, spitting spiders and velvet worms use adhesives for defence or prey capture. With its subterranean lifestyle, the glowworm exhibits a highly specialized adhesive system combined with prey-attracting bioluminescence.

Bioadhesion research is challenging but also offers understanding of bioadhesive evolution and mechanisms, and to identify commonalities and functional principles.

Notes

Acknowledgements

The first author would like to thank the colleagues who contributed to this book chapter with their support, expertise and images. I hope to continue our fruitful cooperation in the future and also that the understanding of the composition and function of these unique bioadhesives becomes more detailed. In particular, I would like express my thanks to Dr. Ivo de Sena Oliveira and Alexander Bär from the University of Kassel (Germany), for providing their unpublished images.

The authors would also like to thank in particular Dr. Benno Meyer-Rochow and Laura Davies for the careful proofreading and reviewing of the manuscript. This work was partly funded by the Austrian Science Fund FWF (Project No. AP 24531-B21) and the European Cooperation in Science and Technology COST Actions TD0906 and CA15216.

References

  1. Amarpuri, G., Chaurasia, V., Jain, D., Blackledge, T. A., & Dhinojwala, A. (2015). Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion. Scientific Reports, 5, 90301–90307.CrossRefGoogle Scholar
  2. Anderson, C. V., & Deban, S. M. (2010). Ballistic tongue projection in chameleons maintains high performance at low temperature. Proceedings of the National Academy of Sciences of the United States of America, 107(12), 5495–5499.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson, C. V., & Deban, S. M. (2012). Thermal effects on motor control and in vitro muscle dynamics of the ballistic tongue apparatus in chameleons. The Journal of Experimental Biology, 215(Pt 24), 4345–4357.CrossRefPubMedGoogle Scholar
  4. Anderson, C. V., Sheridan, T., & Deban, S. M. (2012). Scaling of the ballistic tongue apparatus in chameleons. Journal of Morphology, 273(11), 1214–1226.CrossRefPubMedGoogle Scholar
  5. Arnold, S. J. (1982). A quantitative approach to antipredator performance: Salamander defense against snake attack. Copeia, 1982(2), 247–253.CrossRefGoogle Scholar
  6. Baer, A., & Mayer, G. (2012). Comparative anatomy of slime glands in Onychophora (velvet worms). Journal of Morphology, 273(10), 1079–1088.CrossRefPubMedGoogle Scholar
  7. Baer, A., Oliveira, I. S., Steinhagen, M., Beck-Sickinger, A. G., & Mayer, G. (2014). Slime protein profiling: A non-invasive tool for species identification in Onychophora (velvet worms). Journal of Zoological Systematics and Evolutionary Research, 52, 265–272.CrossRefGoogle Scholar
  8. Baer, A., Schmidt, S., Haensch, S., Eder, M., Mayer, G., & Harrington, M. J. (2017). Mechanoresponsive lipid-protein nanoglobules facilitate reversible fibre formation in velvet worm slime. Nature Communications, 8, 974.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Baker, C. H., Graham, G. C., Scott, K. D., Cameron, S. L., Yeates, D. K., & Merritt, D. J. (2008). Distribution and phylogenetic relationships of Australian glow-worms Arachnocampa (Diptera, Keroplatidae). Molecular Phylogenetics and Evolution, 48, 506–514.CrossRefPubMedGoogle Scholar
  10. Barclay, S. D., Rowell, D. M., & Ash, J. E. (2000). Pheromonally mediated colonization patterns in the velvet worm Euperipatoides rowelli (Onychophora). Journal of Zoology, 250, 437–446.CrossRefGoogle Scholar
  11. Bargmann, W. (1972). Zur Architektur der Mesogloea – Untersuchungen an der Rippenqualle Pleurobrachia pileus. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 123(1), 66–81.CrossRefPubMedGoogle Scholar
  12. Bargmann, W., Jacob, K., & Rast, A. (1972). Über Tentakel und Colloblasten der Ctenophore Pleurobrachia pileus. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 123(1), 121–152.CrossRefPubMedGoogle Scholar
  13. Benkendorff, K., Beardmore, K., Gooley, A. A., Packer, N. H., & Tait, N. N. (1999). Characterization of the slime gland secretion from the peripatus, Euperipatoides kanangrensis (Onychophora: Peripatopsidae). Comparative Biochemistry and Physiology. B, 124, 457–465.CrossRefGoogle Scholar
  14. Benwitz, G. (1978). Elektronenmikroskopische Untersuchungen der Colloblasten-Entwicklung bei der Ctenophora Pleurobrachia pileus (Tentaculifera, Cydippea). Zoomorphologie, 89, 257–278.CrossRefGoogle Scholar
  15. Bernards, M. A., Oke, I., Heyland, A., & Fudge, D. S. (2014). Spontaneous unraveling of hagfish slime thread skeins is mediated by a sewater-soluble protein adhesive. The Journal of Experimental Biology, 217, 1263–1268.CrossRefPubMedGoogle Scholar
  16. Blackledge, T. A., & Hayashi, C. Y. (2006). Silken toolkits: Biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). The Journal of Experimental Biology, 209(Pt 13), 2452–2461.CrossRefPubMedGoogle Scholar
  17. Bocker, L., Ruhs, P. A., Boni, L., Fischer, P., & Kuster, S. (2016). Fiber-enforced hydrogels: Hagfish slime stabilized with biopolymers including k-carrageenan. ACS Biomaterials Science & Engineering, 2, 90–95.CrossRefGoogle Scholar
  18. Bonato, L., Edgecombe, G. D., Lewis, J. G., Minelli, A., Pereira, L. A., Shelley, R. M., & Zapparoli, M. (2010). A common terminology for the external anatomy of centipedes (Chilopoda). Zookeys, 69, 17–51.CrossRefGoogle Scholar
  19. Boni, L., Fischer, P., Bocker, L., Kuster, S., & Ruhs, P. A. (2016a). Hagfish slime and mucin flow properties and their implications for defense. Scientific Reports, 6, 30371.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Boni, L., Ruhs, P. A., Windhab, E. J., Fischer, P., & Kuster, S. (2016b). Gelation of soy milk with hagfish exudate creates a flocculated and fibrous emulsion- and particle gel. PLoS One, 1(1), e0147022.CrossRefGoogle Scholar
  21. Brade-Birks, H. K., & Brade-Birks, S. (1920). Notes on Myriapoda – XX. Luminous chilopoda, with special refence to Geophilus carpophagus, Leach. Annals and Magazine of Natural History, 9(5), 1–30.CrossRefGoogle Scholar
  22. Bristowe, B. A. (1931). LXIII. – Notes on the biology of spider – VI. Spitting as a means of capturing prey by spiders. Annals and Magazine of Natural History, 8(10), 469–471.CrossRefGoogle Scholar
  23. Broadley, R. A. (2015). Notes on pupal behaviour, eclosion, mate attraction, copulation and predation of the New Zealand glowworm Arachnocampa luminosa (Skuse) (Diptera: Keroplatidae), at Waitomo. New Zealand Entomologist, 35(1), 1–9.CrossRefGoogle Scholar
  24. Broadley, R. A., & Stringer, I. A. N. (2001). Prey attraction by larvae of the New Zealand glowworm, Arachnocampa luminosa (Diptera: Mycetophilidae). Invertebrate Biology, 120(2), 170–177.CrossRefGoogle Scholar
  25. Broadley, R. A., & Stringer, I. A. N. (2009). Larval behaviour of the New Zealand glowworm, Arachnocampa luminosa (Diptera: Keroplatidae), in bush and caves. In V. B. Meyer-Rochow (Ed.), Bioluminescence in focus – A collection of illuminating essays (pp. 325–355). Kerala: Research Signpost.Google Scholar
  26. Brodie, E. D. (1977). Salamander antipredator postures. Copeia, 3, 523–535.CrossRefGoogle Scholar
  27. Brodie, E.D. (1983). Antipredator adaptations of salamanders: Evolution and convergence among terrestical species. In N. S. Margaris, M. Arianoutsou-Faraggitaki, & R. J. Reiter (Eds.), Plant, animal and microbial adaptations to terrestrial environment (pp, 109–133). New York: Plenum Publishing Corporation.Google Scholar
  28. Brodie, E. D., & Gibson, L. S. (1969). Defensive behavior and skin glands of the northwestern salamander, Ambystoma gracile. Herpetologica, 25, 187–194.Google Scholar
  29. Brodie, E. D., & Smatresk, N. J. (1990). The antipredator arsenal of fire salamanders: Spraying of secretions from highly pressurized dorsal skin glands. Herpetologica, 46(1), 1–7.Google Scholar
  30. Brusca, R. C., & Brusca, G. J. (2002). Invertebrates. Sunderland: Sinauer Associates Inc.Google Scholar
  31. Bürgis, H. (1980). Eine Spinne, die spuckt. Mikrokosmos, 69, 342–349.Google Scholar
  32. Bürgis, H. (1990). Die Speispinne Scytodes thoracica (Araneae: Sicariidae): ein Beitrag zur Morphology und Biologie. Mitteilungen der Pollichia, 77, 289–313.Google Scholar
  33. Carcupino, M. (1996). Morphological characterization of female accessory sex glands of Eupolybothrus fasciatus (Newport) (Chilopoda Lithobiomorpha). Journal of Morphology, 228, 61–75.CrossRefGoogle Scholar
  34. Carré, D., & Carré, C. (1993). Five types of colloblast in a cydippid ctenophore Minictena luteola Carré and Carré: An ultrastructural study and cytological interpretation. Philosophical Transactions of the Royal Society B, 341, 437–448.CrossRefGoogle Scholar
  35. Clark, A. J., & Summers, A. P. (2007). Morphology and kinematics of feeding in hagfish: Possible functional advantages of jaws. The Journal of Experimental Biology, 210(Pt 22), 3897–3909.CrossRefPubMedGoogle Scholar
  36. Clements, R., & Li, D. (2008). Regulation and non-toxicity of the spit from the pale spitting spider Scytodes pallida (Araneae: Scytodidae). Ethology, 111, 311–321.CrossRefGoogle Scholar
  37. Craig, C. L. (1997). Evolution of arthropod silks. Annual Review of Entomology, 42, 231–267.CrossRefPubMedGoogle Scholar
  38. Dabelow, S. (1958). Zur Biologie der Leimschleuderspinne Scytodes thoracica (Latreille). Zoologische Jahrbücher Abteilung für Systematik, Geographie und Biologie der Tiere, 86, 85–126.Google Scholar
  39. Daly, J. W., Spande, T. F., & Garraffo, H. M. (2005). Alkaloids from amphibian skin: A tabulation of over eight-hundred compounds. Journal of Natural Products, 68, 1556–1575.CrossRefPubMedGoogle Scholar
  40. Dance, A. (2016). Will hagfish yield the fibers of the future? Proceedings of the National Academy of Sciences of the United States of America, 113(26), 7005–7006.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Downing, S. W., Salo, W. L., Spitzer, R. H., & Koch, E. A. (1981). The hagfish slime gland: A model system for studying the biology of mucus. Science, 214, 1143–1144.CrossRefPubMedGoogle Scholar
  42. Downing, S. W., Spitzer, R. H., Koch, E. A., & Salo, W. L. (1984). The hagfish slime gland thread cell I. A unique cellular system for the study of intermediate filaments and intermediate filament-microtubule interactions. The Journal of Cell Biology, 98(2), 653–669.CrossRefPubMedGoogle Scholar
  43. Ducey, P. K., & Brodie, E. D. (1983). Salamanders respond selectively to contacts with snakes: Survival advantage to alternative antipredator strategies. Copeia, 1983(4), 1036–1041.CrossRefGoogle Scholar
  44. Ducey, P. K., Brodie, E. D., & Baness, E. A. (1993). Salamander tail autonomy and snake predation: Role of antipredator behavior and toxicity for three neotropical Bolitoglossa (Caudata: Plethodontidae). Biotropica, 25(3), 344–349.CrossRefGoogle Scholar
  45. Duellman, W. E., & Trueb, L. (1994). Biology of amphibians. Baltimore: John Hopkins University Press.Google Scholar
  46. Dugon, M. M. (2017). Evolution, morphology, and development of the centipede venom system. In P. Gopalakrishnakone, & A. Malhotra (Eds.), Evolution of venomous animals and their toxins (pp. 261–278). Dordrecht: Springer.Google Scholar
  47. Dugon, M. M., & Arthur, W. (2012). Comparative studies on the structure and development of the venom-delivery system of centipedes, and a hypothesis on the origin of this evolutionary novelty. Evolution & Development, 14(1), 128–137.CrossRefGoogle Scholar
  48. Dugon, M. M., Hayden, L., Black, A., & Arthur, W. (2012). Development of the venom ducts in the centipede Scolopendra: An example of recapitulation. Evolution & Development, 14(6), 515–521.CrossRefGoogle Scholar
  49. Emson, R. H., & Whitfield, P. J. (1991). Behavioural and ultrastructural studies on the sedentary platyctenean ctenophore Vallicula multiformis. Hydrobiologia, 216(217), 27–33.CrossRefGoogle Scholar
  50. Evans, C. M., & Brodie, E. D. (1994). Adhesive strength of amphibian skin secretions. Journal of Herpetology, 4(499), 502.Google Scholar
  51. Evenhius, N. L. (2006). Catalog of the Keroplatidae of the world (Insecta: Diptera). Honolulu: Bishop Museum Press.Google Scholar
  52. Fisher, E. G. (1940). New Mycetophilidae from North Carolina (Diptera). Entomological News, 51, 243–247.Google Scholar
  53. Foelix, R. F. (1996). Biology of spiders. New York: Oxford University Press.Google Scholar
  54. Franc, J. M. (1978). Organization and function of ctenophore colloblasts: An ultrastructural study. The Biological Bulletin, 155, 527–541.CrossRefGoogle Scholar
  55. Fu, J., Guerette, P. A., Pavesi, A., Horbelt, N., Lim, C. T., Harrington, M. J., & Miserez, A. (2017). Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale, 9(35), 12908–12915.CrossRefPubMedGoogle Scholar
  56. Fudge, D. S., & Gosline, J. M. (2004). Molecular design of the alpha-keratin composite: Insights from a matrix-free model, hagfish slime threads. Proceedings of the Biological Sciences, 271(1536), 291–299.CrossRefGoogle Scholar
  57. Fudge, D. S., & Schorno, S. (2016). The hagfish gland thread cell: A fiber-producing cell involved in predator defense. Cell, 5(2), 25.CrossRefGoogle Scholar
  58. Fudge, D. S., Gardner, K. H., Forsyth, V. T., Riekel, C., & Gosline, J. M. (2003). The mechanical properties of hydrated intermediate filaments: Insights from hagfish slime threads. Biophysical Journal, 85(3), 2015–2027.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Fudge, D. S., Levy, N., Chiu, S., & Gosline, J. M. (2005). Composition, morphology and mechanics of hagfish slime. The Journal of Experimental Biology, 208(Pt 24), 4613–4625.CrossRefPubMedGoogle Scholar
  60. Fudge, D. S., Schorno, S., & Ferraro, S. (2015). Physiology, biomechanics, and biomimetics of hagfish slime. Annual Review of Biochemistry, 84, 947–967.CrossRefPubMedGoogle Scholar
  61. Fulton, B. B. (1939). Lochetic luminous dipterous larvae. Journal of the Elisha Mitchell Scientific Society, 55(2), 289–294.Google Scholar
  62. Fulton, B. B. (1941). A luminous fly larva with spider traits (Diptera, Mycetophilidae). Annals of the Entomological Society of America, 34, 289–302.CrossRefGoogle Scholar
  63. Gatenby, J. B. (1959). Notes on the New Zealand glow-worm, Bolitophila (Arachnocampa) luminosa. Transactions of the Royal Society of New Zealand, 87(3 & 4), 291–314.Google Scholar
  64. Gatenby, J. B. (1960). The New Zealand glow-worm. Tuatara, 8(2), 86–92.Google Scholar
  65. Gatenby, J. B., & Cotton, S. (1960). Snare building and pupation in Bolitophila luminosa. Transactions of the Royal Society of New Zealand, 88(1), 149–156.Google Scholar
  66. Gilbert, C., & Rayor, L. S. (1983). First record of mantisfly (Neuroptera: Mantispidae) parasitizing a spitting spider (Scytodidae). Journal of the Kansas Entomological Society, 56(4), 578–580.Google Scholar
  67. Gilbert, C., & Rayor, L. S. (1985). Predatory behavior of spitting spiders (Araneae: Scytodidae) and the evolution of prey wrapping. Journal of Arachnology, 13, 231–241.Google Scholar
  68. Gosline, J. M., Guerette, P. A., Ortlepp, C. S., & Savage, K. N. (1999). The mechanical design of spider silks: From fibroin sequence to mechanical function. The Journal of Experimental Biology, 202(Pt 23), 3295–3303.PubMedGoogle Scholar
  69. Graham, L. D., Glattauer, V., Huson, M. G., Maxwell, J. M., Knott, R. B., White, J. W., Vaughan, P. R., Peng, Y., Tyler, M. J., Werkmeister, J. A., et al. (2005). Characterization of a protein-based adhesive elastomer secreted by the Australian frog Notaden bennetti. Biomacromolecules, 6(6), 3300–3312.CrossRefPubMedGoogle Scholar
  70. Graham, L. D., Glattauer, V., Li, D., Tyler, M. J., & Ramshaw, J. A. (2013). The adhesive skin exudate of Notaden bennetti frogs (Anura: Limnodynastinae) has similarities to the prey capture glue of Euperipatoides sp. velvet worms (Onychophora: Peripatopsidae). Comparative Biochemistry and Physiology. B, 165(4), 250–259.CrossRefGoogle Scholar
  71. Green, L. F. B. (1978). Thesis: Structure and function of the Malphighian tubules of the larva of the New Zealand glow-worm Arachnocampa luminosa (Skuse). Auckland: University of Auckland.Google Scholar
  72. Greve, W. (1974). Organisation der Rippenqualle Pleurobrachia pileus (Ctenophora). Institut für wissenschaftlichen Film, C1186(1972), 3–13.Google Scholar
  73. Greve, W. (1975). Verhaltensweisen der Rippenquallen Pleurobrachia pileus (Ctenophora). Institut für wissenschaftlichen Film, C1181(1975), 3–10.Google Scholar
  74. Haritos, V. S., Niranjane, A., Weisman, S., Trueman, H. E., Sriskantha, A., & Sutherland, T. D. (2010). Harnessing disorder: Onychophorans use highly unstructured proteins, not silks, for prey capture. Proceedings of Biological Society of Washington, 277(1698), 3255–3263.CrossRefGoogle Scholar
  75. Hayashi, C. Y., & Lewis, R. V. (1998). Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. Journal of Molecular Biology, 275(5), 773–784.CrossRefPubMedGoogle Scholar
  76. Heatley, N. G. (1936). The digestive enzymes of the Onychophora (Peripatopsis spp.) The Journal of Experimental Biology, 13, 329–343.Google Scholar
  77. Heiss, E., Natchev, N., Salaberger, D., Gumpenberger, M., Rabanser, A., & Weisgram, J. (2010). Hurt yourself to hurt your enemy: New insights on the function of the bizarre antipredator mechanism in the salamandrid Pleurodeles waltl. Journal of Zoology, 280, 156–162.CrossRefGoogle Scholar
  78. Herr, J. E., Winegard, T. M., O’Donnell, M. J., Yancey, P. H., & Fudge, D. S. (2010). Stabilization and swelling of hagfish slime mucin vesicles. The Journal of Experimental Biology, 213(Pt 7), 1092–1099.CrossRefPubMedGoogle Scholar
  79. Herr, J. E., Clifford, A. M., Goss, G. G., & Fudge, D. S. (2014). Defensive slime formation in Pacific hagfish requires Ca2+− and aquaporin-mediated swelling of released mucin vesicles. The Journal of Experimental Biology, 217(Pt 13), 2288–2296.CrossRefPubMedGoogle Scholar
  80. Hopkin, S. P., & Anger, H. S. (1992). On the structure and function of the glue-secreting glands of Henia vesuviana (Newport, 1845) (Chilopoda: Geophilomorpha). Berichte des naturwissenschaftlich-medizinischen Vereins in Innsbruck Supplement, 10, 71–79.Google Scholar
  81. Hopkin, S. P., & Gaywood, M. J. (1987). Encounters between the geophilid centipede Henia (Chaetechelyne) vesuviana Newport and the devil’s coach horse beetle Staphylinus olens (Mueller). Bullettin of the Britain Myriapadology Group, 4, 22–26.Google Scholar
  82. Hopkin, S. P., Gaywood, M. J., Vincent, J. F. V., & Mayes-Harris, E. L. V. (1990). Defensive secretion of proteinaceous glues by Henia (Chaetechelyne) vesuviana (Chilopoda Geophilomorpha). In A. Minelli (Ed.), Proceedings of the 7th international congress of myriapodology (pp. 175–181). Leiden: E.J. Brill.Google Scholar
  83. Hovasse, R., & de Puytorac, P. (1962). Contributions á la connaissance du colloblaste, grace á la microscopie électronique. Comptes Rendus. Academy of Sciences, 255, 3223–3225.Google Scholar
  84. Hovasse, R., & de Puytorac, P. (1963). Le colloblaste des ctenophores: Ultrastructure, signification. In J. A. Moore (Ed.), Proceedings of the XVI international congress of zoology, 20–27 August 1963, Washington, 27.Google Scholar
  85. Hu, X., Vasanthavada, K., Kohler, K., McNary, S., Moore, A. M., & Vierra, C. A. (2006). Molecular mechanisms of spider silk. Cellular and Molecular Life Sciences, 63(17), 1986–1999.CrossRefPubMedGoogle Scholar
  86. Humphries, T. (1889). The Waitomo caves, King Country, Appendices to the Journals of the House of Representatives, V(III), H-18.Google Scholar
  87. Jackson, R. R., Li, D., Fijn, N., & Barrion, A. (1998). Predator-prey interactions between aggressive-mimic jumping spiders (Salticidae) and araneophagic spitting spiders (Scytodidae) from the Philippines. Journal of Insect Behavior, 11(3), 319–342.CrossRefGoogle Scholar
  88. Jeckel, A. M., Grant, T., & Saporito, R. A. (2015). Sequestered and synthesized chemical defenses in the poison frog Melanophryniscus moreirae. Journal of Chemical Ecology, 41(5), 505–512.CrossRefPubMedGoogle Scholar
  89. Jones, T. H., Conner, W. E., Meinwald, J., Eisner, H. E., & Eisner, T. (1976). Benzoyl cyanide and mandelonitrile in the cynogenetic secretion of a centipede. Journal of Chemical Ecology, 2(4), 421–429.CrossRefGoogle Scholar
  90. Keil, T. (1975). Thesis: Die Antennensinnes- und Hautdrüsenorgane von Lithobius forficatus L. – Eine licht- und elektronenmikroskopische Untersuchung. Berlin: Freie Universität.Google Scholar
  91. Koch, A. (1927). Studien an leuchtenden Tieren. I. Das Leuchten der Myriapoden. Zeitschrift für Morphologie und Ökologie der Tiere, 8(1/2), 241–270.CrossRefGoogle Scholar
  92. Koch, E. A., Spitzer, R. H., Pithawalla, R. B., & Downing, S. W. (1991). Keratin-like components of gland thread cells modulate the properties of mucus from hagfish (Eptatretus stouti). Cell and Tissue Research, 264(1), 79–86.CrossRefPubMedGoogle Scholar
  93. Kovoor, P. J., & Zylberberg, L. (1972). Histologie et infrastructure de la glande chélicérienne de Scytodes delicatula Sim. (Araneidae, Scytodidae). Annales des Sciences Naturelles – Zoologie et Biologie Animale, 14, 333–388.Google Scholar
  94. Lametschwandtner, A., Lametschwandtner, U., & Patzner, R. (1986). The different vascular patterns of slime glands in the hagfishes, Myxine glutinosa Linnaeus and Eptatretus stoutii Lockington: A scanning electron microscope study of vascular corrosion casts. Acta Zoologica, 67, 243–248.CrossRefGoogle Scholar
  95. Lane, E. B., & Whitear, M. (1980). Skein cells in lamprey. C. Journal of Zoology, 58(3), 450–455.Google Scholar
  96. Largen, W., & Woodley, S. K. (2008). Cutaneous tail glands, noxious skin secretions, and scent marking in a terrestrial salamander (Plethodon shermani). Herpetologica, 64(3), 270–280.CrossRefGoogle Scholar
  97. Lavallard, R., & Campiglia, S. (1971). Données cytochimiques et ultrastructurales sur les tubes sécréteurs des glandes de la glu chez Peripatus acacioi Marcus et Marcus (Onychophore). Zeitschrift für Zellforschung und Mikroskopische Anatomie, 118, 12–34.CrossRefPubMedGoogle Scholar
  98. Lee, J. (1976). Bioluminescence of the Australian glow-worm, Arachnocampa richardsae Harrison. Photochemistry and Photobiology, 24, 279–285.CrossRefGoogle Scholar
  99. Leppi, T. J. (1968). Morphochemical analysis of mucous cells in the skin and slime glands of hagfishes. Histochemie, 15(1), 68–78.CrossRefPubMedGoogle Scholar
  100. Lim, J., Fudge, D. S., Levy, N., & Gosline, J. M. (2006). Hagfish slime ecomechanics: Testing the gill-clogging hypothesis. The Journal of Experimental Biology, 209(Pt 4), 702–710.CrossRefPubMedGoogle Scholar
  101. Luchtel, D. L., Deyrup-Olsen, I., & Martin, A. W. (1991). Ultrastructure and lysis of mucin-containing granules in epidermal secretions of the terrestrial slug Ariolimax columbianus (Mollusca: Gastropoda:Pulmonata). Cell and Tissue Research, 266, 375–383.CrossRefGoogle Scholar
  102. Mackie, G. O., Mills, C. E., & Singla, C. L. (1988). Structure and function of the prehensile tentilla of Euplokamis (Ctenophora, Cydippida). Zoomorphology, 107, 319–337.CrossRefGoogle Scholar
  103. Martini, F. (1998). The ecology of hagfishes. In: The biology of hagfishes, ed. by Jørgensen, J.M., Lomholt, J.P., Weber, R.E. and Malte, H. London: Chapman & Hall, 57–77.Google Scholar
  104. Maschwitz, U., Lauschke, U., & Würmli, M. (1979). Hydrogen cyanide-producing glands in a scolopender, Asanada n.sp. (Chilopoda, Scolopendridae). Journal of Chemical Ecology, 5(6), 901–907.CrossRefGoogle Scholar
  105. Matile, L. (1981). Description d’un Keroplatidae du crétacé moyen et données morphologiques et taxinomiques sur les Mycetophiloidea (Diptera). Annales de la Société Entomologique de France, 17(1), 99–123.Google Scholar
  106. Mayer, G. (2007). Metaperipatus inae sp. nov. (Onychophora: Peripatopsidae) from Chile with a novel ovarian type and dermal insemination. Zootaxa, 1440(1), 21–37.CrossRefGoogle Scholar
  107. Mayer, G. and Oliveira, I.S. (2011). Phylum Onychophora Grube, 1853. In: Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness, ed. by Zhang, Z.Q. Auckland: Magnolia Press.Google Scholar
  108. Mayer, A. M., Glaser, K. B., Cuevas, C., Jacobs, R. S., Kem, W., Little, R. D., McIntosh, J. M., Newman, D. J., Potts, B. C., & Shuster, D. E. (2010). The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends in Pharmacological Sciences, 31(6), 255–265.CrossRefPubMedGoogle Scholar
  109. Mayer, G., Oliveira, I. S., Baer, A., Hammel, J. U., Gallant, J., & Hochberg, R. (2015). Capture of prey, feeding, and functional anatomy of the jaws in velvet worms (Onychophora). Integrative and Comparative Biology, 55(2), 217–227.CrossRefPubMedGoogle Scholar
  110. McAlister, W. H. (1960). The spitting habit in the spider Scytodes intricata banks (Family Scytodidae). Texas Journal of Science, 12, 17–20.Google Scholar
  111. Mebs, D. (2000). Gifttiere. Stuttgart: Wissenschaftliche Verlagsgesellschaft.Google Scholar
  112. Merritt, D. J., & Baker, C. (2001). Australian glow-worms in caves. Newcaves Chronicles, 16, 42–44.Google Scholar
  113. Merritt, D. J., & Clarke, A. K. (2011). Synchronized circadian bioluminescence in cave-dwelling Arachnocampa tasmaniensis (glowworms). Journal of Biological Rhythms, 26(1), 34–43.CrossRefPubMedGoogle Scholar
  114. Meyer-Rochow, V. B. (1990). The New Zealand glowworm. Otorohanga: Waitomo Caves Museum Society.Google Scholar
  115. Meyer-Rochow, V. B. (2007). Glowworms: A review of Arachnocampa spp. and kin. Luminescence, 22, 251–265.CrossRefPubMedGoogle Scholar
  116. Meyer-Rochow, V. B., & Stringer, I. A. N. (1998). Underjordisk i Jamaica – tropeoens fascinerende huleverden going underground in Jamaica: The fascinating world of caves. Naturens Verden, 8, 297–302.Google Scholar
  117. Millot, J. (1930). Glandes venimeuses et glandes sericigenes chez les Sicariides. Bulletin de la Société Zoologique de France, 55, 150–175.Google Scholar
  118. Mina, A. E., Ponti, A. K., Woodcraft, N. L., Johnson, E. E., & Saporito, R. A. (2015). Variation in alkaloid-based microbial defenses of the dendrobatidpoison frog Oophaga pumilio. Chemoecology, 25(4), 169–178.CrossRefGoogle Scholar
  119. Mitchell, J., & Gibbons, W. (2010). Salamanders of the Southeast. Athens, GA: University of Georgia Press.Google Scholar
  120. Miyashita, T. and Coates, M.I. (2017). Hagfish embryology: Staging table and relevance to the evolution and development of vertebrates. In: Hagfish biology, ed. by Edwards, S.L. and Goss, G.G. Boca Raton: CRC Press, 95–128.Google Scholar
  121. Moore, J. (2001). Cnidaria. In An introduction to the invertebrates (pp. 30–46). Cambridge: Cambridge University Press.Google Scholar
  122. Mora, M., Herrera, A., & Leon, P. (1996). Análisis electroforético de las secreciones adhesivas de onicóforos del género Epiperipatus (Onychophora: Peripatidae). Revista de Biología Tropical, 44(1), 147–152.Google Scholar
  123. Morera-Brenes, B., & Monge-Nájera, J. (2010). A new giant species of placented worm and the mechanism by which onychophorans weave their nets (Onychophora: Peripatidae). Revista de Biología Tropical, 58(4), 1127–1142.CrossRefPubMedGoogle Scholar
  124. Moroz, L. L., Kocot, K. M., Citarella, M. R., Dosung, S., Norekian, T. P., Povolotskaya, I. S., Grigorenko, A. P., Dailey, C., Berezikov, E., Buckley, K. M., et al. (2014). The ctenophore genome and the evolutionary origins of neural systems. Nature, 510(7503), 109–114.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Moseley, H. N. (1874). XXII. On the structure and development of Peripatus capensis. Philosophical Transactions of the Royal Society of London, 164, 757–782.CrossRefGoogle Scholar
  126. Müller, C. H. G., Rosenberg, J., & Hilken, G. (2014). Ultrastructure, functional morphology and evolution of recto-canal epidermal glands in Myriapoda. Arthropod Structure & Development, 43(1), 43–61.CrossRefGoogle Scholar
  127. Negishi, A., Armstrong, C. L., Kreplak, L., Rheinstadter, M. C., Lim, L. T., Gillis, T. E., & Fudge, D. S. (2012). The production of fibers and films from solubilized hagfish slime thread proteins. Biomacromolecules, 13(11), 3475–3482.CrossRefPubMedGoogle Scholar
  128. Nelson, L., van der Lande, V., & Robson, E. A. (1980). Fine structural and histochemical studies on salivary glands of Peripatoides novae-zealandiae (Onychophora) with special reference to acid phosphatase distribution. Tissue & Cell, 12(2), 405–418.CrossRefGoogle Scholar
  129. Nentwig, W. (1985). Feeding ecology of the tropical spitting spider Scytodes longipes (Araneae, Scytodidae). Oecologia, 65, 284–288.CrossRefPubMedGoogle Scholar
  130. Nowak, R. T., & Brodie, E. D. (1978). Rib penetration and associated antipredator adaptations in the salamander Pleurodeles waltl (Salamandridae). Copeia, 1978, 424–429.CrossRefGoogle Scholar
  131. Oliveira, I. S., & Mayer, G. (2017). A new giant egg-laying onychophoran (Peripatopsidae) reveals evolutionary and biogeographical aspects of Australian velvet worms. Organisms, Diversity and Evolution, 17(2), 375–391.CrossRefGoogle Scholar
  132. Oliveira, I. S., Read, V. M. S., & Mayer, G. (2012). A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names. Zookeys, 211, 1–70.CrossRefGoogle Scholar
  133. Oliveira, I. S., Bai, M., Jahn, H., Gross, V., Martin, C., Hammel, J. U., Zhang, W., & Mayer, G. (2016). Earliest onychophoran in amber reveals Gondwanan migration patterns. Current Biology, 26(19), 2594–2601.CrossRefPubMedGoogle Scholar
  134. Opell, B.D. (2013). Cribellar thread. In: Spider ecophysiology, ed. by Nentwig, W. Heidelberg: Springer, 303–315.Google Scholar
  135. Opell, B. D., & Hendricks, M. L. (2010). The role of granules within viscous capture threads of orb-weaving spiders. The Journal of Experimental Biology, 213(2), 339–346.CrossRefPubMedGoogle Scholar
  136. Opell, B. D., Karinshak, S. E., & Sigler, M. A. (2011). Humidity affects the extensibility of an orb-weaving spider’s viscous thread droplets. The Journal of Experimental Biology, 214, 2988–2993.CrossRefPubMedGoogle Scholar
  137. Opell, B. D., Andrews, S. F., Karinshak, S. E., & Sigler, M. A. (2015). The stability of hygroscopic compounds in orb-web spider viscous thread. Journal of Arachnology, 43, 152–157.CrossRefGoogle Scholar
  138. Osawa, K., Sasaki, T., & Meyer-Rochow, V. B. (2014). New observations on the biology of Keroplatus nipponicus Okada, 1938 (Diptera: Mycetophiloidea; Keroplatidae), a bioluminescent fungivorous insect. Entomologie heute, 26, 139–149.Google Scholar
  139. Östman, C. (2000). A guideline to nematocyst nomenclature and classification and some notes on the systematic value of nematocysts. Scientia Marina, 64(Suppl. 1), 31–46.CrossRefGoogle Scholar
  140. Panic, J. (1963). Das Verhalten von Ameisen gegenüber bodenbewohnenden Kleinarthropoden. Pedobiologia, 2, 223–234.Google Scholar
  141. Poinar, G. (1996). Fossil velvet worms in Baltic and Dominican amber: Onychophoran evolution and biogeography. Science, 273, 1370–1371.CrossRefGoogle Scholar
  142. Pugsley, C. (1980). Thesis: Ecology of the New Zealand Arachnocampa luminosa (Skuse) (Diptera: Mycetophilidae) in tourist caves at Waitomo. Auckland: University of Auckland.Google Scholar
  143. Pugsley, C. (1984). Ecology of the New Zealand glowworm, Arachnocampa luminosa (Diptera: Keroplatidae), in the Glowworm cave, Waitomo. Journal of the Royal Society of New Zealand, 14(4), 387–407.CrossRefGoogle Scholar
  144. Rahemtulla, F., Hoglund, N. G., & Lovtrup, S. (1976). Acid mucopolysaccharides in the skin of some lower vertebrates (hagfish, lamprey and chimaera). Comparative Biochemistry and Physiology. B, 53(3), 295–298.CrossRefGoogle Scholar
  145. Read, V., & Hughes, R. (1987). Feeding behaviour and prey choice in Macroperipatus torquatus (Onychophora). Proceedings of the Zoological Society of London. B, 230, 483–506.CrossRefGoogle Scholar
  146. Reid, A. (1996). Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships. Invertebrate Taxonomy, 10(4), 665–936.CrossRefGoogle Scholar
  147. Reinhard, J., & Rowell, D. M. (2005). Social behaviour in an Australian velvet worm, Euperipatoides rowelli (Onychophora: Peripatopsidae). Journal of Zoology, 267, 1–7.CrossRefGoogle Scholar
  148. Richards, A. M. (1960). Observations on the New Zealand glow-worm Arachnocampa luminosa (Skuse) 1890. Transactions of the Royal Society of New Zealand, 88(3), 559–574.Google Scholar
  149. Rilling, G. (1968). Lithobius forficatus. Stuttgart: Gustav Fischer Verlag.Google Scholar
  150. Robinson, W. H. (2005). Urban insects and arachnids – A handbook of urban entomology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  151. Röper, H. (1977). Analytical investigations on the defensive secretions from Peripatopsis moseleyi (Onychophora). Zeitschrift für Naturforschung C: A Journal of Biosciences, 32, 57–60.Google Scholar
  152. Rosenberg, J. (2009a). Giftdrüsen und Giftwirkung. In: Die Hundertfüsser – Chilopoda, ed. by Rosenberg, J., Voigtländer, K. and Hilken, G. Hohenwarsleben: Westarp Wissenschaften, 311–323.Google Scholar
  153. Rosenberg, J. (2009b). Wehrdrüsen. In: Die Hundertfüsser – Chilopoda, ed. by Rosenberg, J., Voigtländer, K. and Hilken, G. Hohenwarsleben: Westarp Wissenschaften, 324–328.Google Scholar
  154. Rosenberg, J., & Hilken, G. (2006). Fine structural organization of the poison gland of Lithobius forficatus (Chilopoda, Lithobiomorpha) Nor. Journal of Entomology, 53, 119–127.Google Scholar
  155. Rosenberg, J. and Meyer-Rochow, V.B. (2009). Luminescent myriapoda: A brief review. In: Bioluminescence in focus – A collection of illuminating essays, ed. by Meyer-Rochow, V.B. Thiruvananthapuram: Research Signpost, 139–146.Google Scholar
  156. Rosenberg, J., Müller, C.H.G. and Hilken, G. (2011). Chilopoda – Integument and associated organs. In: Treatise on zoology – Anatomy, taxonomy, biology, ed. by Minelli, A. Leiden: E.J. Brill, 67–111.Google Scholar
  157. Ruhberg, H. (1985). Die Peripatopsidae (Onychophora). Systematik, Ökologie, Chorologie und phylogenetische Aspekte. In: Zoologica, ed. by Schaller, F. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung, 1–183.Google Scholar
  158. Ruhberg, H. and Mayer, G. (2013). Onychophora, Stummelfüßer. In: Spezielle Zoologie, ed. by Westheide, W. And Rieger, G. Berlin: Springer, 457–464.Google Scholar
  159. Ruhberg, H., & Storch, V. (1977). Über Wehrdrüsen und Wehrsekret von Peripatopsis moseleyi (Onychophora) – Electron microscopical investigations and live observations. Zoologischer Anzeiger, 198(1/2), 9–19.Google Scholar
  160. Salo, W. L., Downing, S. W., Lidinsky, W. A., Gallagher, W. H., Spitzer, R. H., & Koch, E. A. (1983). Fractionation of hagfish slime gland secretions: Partial characterization of the mucous vesicle fraction. Preparative Biochemistry, 13(2), 103–135.CrossRefPubMedGoogle Scholar
  161. Schaffeld, M., & Schultess, J. (2006). Genes coding for intermediate filament proteins closely related to the hagfish “thread keratins (TK)” alpha and gamma also exist in lamprey, teleosts and amphibians. Experimental Cell Research, 312(9), 1447–1462.CrossRefPubMedGoogle Scholar
  162. Schildknecht, H., Maschwitz, U., & Krauss, D. (1968). Blausäure im Wehrsekret des Erdläufers Pachymerium ferrugineum. Naturwissenschaften, 55(5), 230.CrossRefPubMedGoogle Scholar
  163. Schmitz, H. (1912). Biologisch-anatomische Untersuchungen an einer höhlenbewohnenden Mycetophilidenlarve (Polylepta leptogaster Winn.) Jaarboek van het Natuurhistorisch Genootschap in Limburg, 65–96.Google Scholar
  164. Sedgwick, A. (1895). Peripatus. In: The Cambridge natural history, Vol. 5, ed. by Sedgwick, A., Sinclair, F.G. And Sharp, D. London: Macmillan and Co., 3–26.Google Scholar
  165. Sevcik, J., Kjaerandsen, J., & Marshall, S. A. (2012). Revision of Speolepta (Diptera: Mycetophilidae), with description of new Neartic and oriental species. Canadian Entomologist, 144(1), 93–107.CrossRefGoogle Scholar
  166. Sharpe, M. L., Dearden, P. K., Gimenez, G., & Krause, K. L. (2015). Comparative RNA seq analysis of the New Zealand glowworm Arachnocampa luminosa reveals bioluminescence-related genes. BMC Genomics, 16(1), 825.CrossRefPubMedPubMedCentralGoogle Scholar
  167. Simon, H. R. (1964). Zum Abwehrverhalten von Lithobius forficatus L. (Myriapoda, Chilopoda). Entomologische Zeitschrift, 74, 114–118.Google Scholar
  168. Sivinski, J. M. (1998). Phototrophism, bioluminescence, and the Diptera. Florida Entomologist, 81(3), 282–292.CrossRefGoogle Scholar
  169. Smith, A. M. (2016). Biological adhesives. Cham: Springer.CrossRefGoogle Scholar
  170. Spitzer, R.H. and Koch, E.A. (1998). Hagfish skin and slime glands. In: The Biology of hagfishes, ed. by Jørgensen, J.M., Lomholt, J.P., Weber, R.E. And Malte, H. London: Chapman & Hall, 109–132.Google Scholar
  171. Spitzer, R. H., Downing, S. W., Koch, E. A., Salo, W. L., & Saidel, L. J. (1984). Hagfish slime gland thread cells. II. Isolation and characterization of intermediate filament components associated with the thread. The Journal of Cell Biology, 98(2), 670–677.CrossRefPubMedGoogle Scholar
  172. Spitzer, R. H., Koch, E. A., & Downing, S. W. (1988). Maturation of hagfish gland thread cells: Composition and characterization of intermediate filament polypeptides. Cell Motility and the Cytoskeleton, 11(1), 31–45.CrossRefPubMedGoogle Scholar
  173. Stellwagen, S. D., Opell, B. D., & Short, K. G. (2014). Temperature mediates the effect of humidity on the viscoelasticity of glycoprotein glue within the droplets of an orb-weaving spider’s prey capture threads. The Journal of Experimental Biology, 217(Pt 9), 1563–1569.CrossRefPubMedGoogle Scholar
  174. Storch, V., & Lehnert-Moritz, K. (1974). Zur Entwicklung der Kolloblasten von Pleurobrachia pileus (Ctenophora). Marine Biology, 28, 215–219.CrossRefGoogle Scholar
  175. Storch, V. and Ruhberg, H. (1993). Onychophora. In: Microscopic anatomy of invertebrates, ed. by Harrison, F.W. and Rice, M.E. New York: Wiley-Liss, 11–56.Google Scholar
  176. Storch, V., Alberti, G., & Ruhberg, H. (1979). Light and electron microscopical investigations on the salivary glands of Opisthopatus cinctipes and Peripatopsis moseleyi (Onychophora: Peripatopsidae). Zoologischer Anzeiger, 203, 35–47.Google Scholar
  177. Stringer, I. A. N. (1967). The larval behaviour of the New Zealand glow-worm Arachnocampa luminosa. Tane, 13, 107–117.Google Scholar
  178. Stringer, I. A. N., & Meyer-Rochow, V. B. (1993). Fishing in the dark: Unusual habits of a Jamaican fly. Jamaica Naturalist, 3, 17–18.Google Scholar
  179. Stringer, I. A. N., & Meyer-Rochow, V. B. (1996). Distribution of flying insects in relation to predacoius web-spinning larvae of Neoditomyia farri (Diptera:Mycetophilidae) in a Jamaican cave. Annals of the Entomological Society of America, 89(6), 849–857.CrossRefGoogle Scholar
  180. Sturm, H. (1973). Fanggespinste und Verhalten der Larven von Neoditomyia andina und N. colombiana Lane (Diptera, Mycetophilidae). Zoologischer Anzeiger, 191(1/2), 61–86.Google Scholar
  181. Subramanian, S., Ross, N. W., & MacKinnon, S. L. (2008). Comparison of the biochemical composition of normal epidermal mucus and extruded slime of hagfish (Myxine glutinosa L.) Fish & Shellfish Immunology, 25(5), 625–632.CrossRefGoogle Scholar
  182. Suter, R. B., & Stratton, G. E. (2005). Scytodes vs. Schizocosa: Predatory techniques and their morphological correlates. Journal of Arachnology, 33, 7–15.CrossRefGoogle Scholar
  183. Suter, R. B., & Stratton, G. E. (2010). Spitting performance parameters, and their biomechanical implications in the spitting spider, Scytodes thoracica. Journal of Insect Science, 9(62), 1–15.CrossRefGoogle Scholar
  184. Terakado, K., Ogawa, M., Hashimoto, Y., & Matsuzaki, H. (1975). Ultrastructure of the thread cells in the slime gland of Japanese hagfishes, Paramyxine atami and Eptatretus burgeri. Cell and Tissue Research, 159(3), 311–323.CrossRefPubMedGoogle Scholar
  185. Turcato, A. and Minelli, A., (1990). Fine structure of the ventral glands of Pleurogeophilus mediterraneus (Meinert) (Chilopoda Geophilomorpha). In Proceedings of the 7th international congress of myriapodology, ed. by Minelli, A. Leiden: E.J. Brill, 165–173.Google Scholar
  186. Turcato, A., Fusco, G., & Minelli, A. (1995). The sternal pore of centipedes (Chilopoda: Geophilomorpha). Zoological Journal of the Linnean Society, 115, 185–209.CrossRefGoogle Scholar
  187. Tyler, M.J. (2010). Adhesive dermal secretions of the Amphibia, with particular reference to the Australian limnodynastid genus Notaden. In: Biological adhesive systems: From nature to technical and medical application, ed. by von Byern, J. And Grunwald, I. Wien/NewYork: Springer, 181–186.Google Scholar
  188. Undheim, E. A., Fry, B. G., & King, G. F. (2015). Centipede venom: Recent discoveries and current state of knowledge. Toxins, 7(3), 679–704.CrossRefPubMedPubMedCentralGoogle Scholar
  189. Valerio, C. E. (1981). Spitting spiders (Araneae, Scytodidae, Scytodes) from Central America. Bulletin of the American Museum of Natural History, 170, 80–89.Google Scholar
  190. van Walraven, L., Daan, R., Langenberg, V. T., & van der Veer, H. W. (2017). Species composition and predation pressure of the gelatinous zooplankton community in the western Dutch Wadden Sea before and after the invasion of the ctenophore Mnemiopsis leidyi A. Agassiz, 1865. Aquatic Invasions, 12(1), 5–21.CrossRefGoogle Scholar
  191. Vences, M. (1988). Zum Beutefangverhalten der europäischen Amphibien. Herpetofauna, 10(57), 6–10.Google Scholar
  192. Verhoeff, K. W. (1905). Über die Entwicklungsstadien der Steinläufer, Lithobiiden, und Beiträge zur Kenntnis der Chilopoden. Zoologische Jahrbücher Supplement, 8, 195–298.Google Scholar
  193. Vollrath, F. (1999). Biology of spider silk. International Journal of Biological Macromolecules, 24(2–3), 81–88.CrossRefPubMedGoogle Scholar
  194. Vollrath, F., & Knight, D. P. (2001). Liquid crystalline spinning of spider silk. Nature, 410(6828), 541–548.CrossRefPubMedGoogle Scholar
  195. von Byern, J., Mills, C.E. and Flammang, P. (2010). Bonding tactics in ctenophores – Morphology and function of the colloblast system. In: Biological adhesive systems: From nature to technical and medical application, ed. by von Byern, J. And Grunwald, I. Wien/NewYork: Springer, 29–40.Google Scholar
  196. von Byern, J., Dicke, U., Heiss, E., Grunwald, I., Gorb, S., Staedler, Y., & Cyran, N. (2015). Morphological characterization of the glue-producing system in the salamander Plethodon shermani (Caudata, Plethodontidae). Zoology (Jena, Germany), 118(5), 334–347.CrossRefGoogle Scholar
  197. von Byern, J., Dorrer, V., Merritt, D. J., Chandler, P., Stringer, I. A. N., Marchetti-Deschmann, M., McNaughton, A., Cyran, N., Thiel, K., Noeske, M., & Grunwald, I. (2016). Characterization of the fishing lines in Titiwai (=Arachnocampa luminosa Skuse, 1890) from New Zealand and Australia. Public Library of Science One, 11(12), e0162687_1–e0162687_30.Google Scholar
  198. von Byern, J., Grunwald, I., Kosok, M., Saporito, R. A., Dicke, U., Wetjen, O., Thiel, K., Kowalik, T., & Marchetti-Deschmann, M. (2017a). Chemical characterization of the adhesive secretions of the salamander Plethodon shermani (Caudata, Plethodontidae). Scientific Reports, 7(1), 6647.CrossRefGoogle Scholar
  199. von Byern, J., Mebs, D., Heiss, E., Dicke, U., Wetjen, O., Bakkegard, K. A., Grunwald, I., Wolbank, S., Mühleder, S., Gugerell, A., et al. (2017b). Salamanders on the bench – A biocompatibility study of salamander skin secretions in cell cultures. Toxicon, 135, 24–32.CrossRefGoogle Scholar
  200. Vujisic, L. V., Vuckovic, I. M., Makarov, S. E., Ilic, B. S., Antic, D. Z., Jadranin, M. B., Todorovic, N. M., Mrkic, I. V., Vajs, V. E., Lucic, L. R., et al. (2013). Chemistry of the sternal gland secretion of the Mediterranean centipede Himantarium gabrielis (Linnaeus, 1767) (Chilopoda: Geophilomorpha: Himantariidae). Naturwissenschaften, 100(9), 861–870.CrossRefPubMedGoogle Scholar
  201. Walker, A. A., Weisman, S., Church, J. S., Merritt, D. J., Mudie, S. T., & Sutherland, T. D. (2012). Silk from crickets: A new twist on spinning. PLoS One, 7(2), e30408.CrossRefPubMedPubMedCentralGoogle Scholar
  202. Walker, A. A., Weisman, S., Trueman, H. E., Merritt, D. J., & Sutherland, T. D. (2015). The other prey-capture silk: Fibres made by glow-worms (Diptera: Keroplatidae) comprise cross-beta-sheet crystallites in an abundant amorphous fraction. Comparative Biochemistry and Physiology. B, 187, 78–84.CrossRefGoogle Scholar
  203. Weill, M. R. (1935). Structure, origine et interpretation cytologique des colloblastes de Lampetia pancerina Chun (Ctenophores). Comptes Rendus. Academy of Sciences, 17, 1628–1630.Google Scholar
  204. Weinrauch, A.M., Edwards, S.L. and Goss, G.G. (2017). Anatomy of the Pacific hagfish (Eptatretus stoutii). In: Hagfish biology, ed. by Edwards, S.L. and Goss, G.G. Boca Raton: CRC Press, 2–39.Google Scholar
  205. Whitear, M. (1986). The skin of fishes including cyclostomes - epidermis. In: Biology of the integument, Vol. 2 Vertebrates, ed. by Bereiter-Hahn, J., Matoltsy, A.G., Richards, K.S. Berlin: Springer, 8–38.Google Scholar
  206. Williams, T. A., & Anthony, C. D. (1994). Technique to isolate salamander granular gland products with a comment on the evolution of adhesiveness. Copeia, 2(540), 540–541.CrossRefGoogle Scholar
  207. Williams, T. A., & Larsen, J. H. (1986). New function for the granular skin glands of the eastern long-toed salamander, Ambystoma macrodactylum columbianum. The Journal of Experimental Zoology, 239, 329–333.CrossRefGoogle Scholar
  208. Willis, R. E., White, C. R., & Merritt, D. J. (2010). Using light as a lure is an efficient predatory strategy in Arachnocampa flava, an Australian glowworm. Journal of Comparative Physiology B, 181(4), 477–486.Google Scholar
  209. Winegard, T. M. (2012). Thesis: Slime gland cytology and mechanisms of slime thread production in the Atlantic hagfish (Myxine glutinosa). Guelph: The University of Guelph.Google Scholar
  210. Winegard, T. M., & Fudge, D. S. (2010). Deployment of hagfish slime thread skeins requires the transmission of mixing forces via mucin strands. The Journal of Experimental Biology, 213(Pt 8), 1235–1240.CrossRefPubMedGoogle Scholar
  211. Winegard, T., Herr, J., Mena, C., Lee, B., Dinov, I., Bird, D., Bernards, M., Hobel, S., van Valkenburgh, B., Toga, A., & Fudge, D. S. (2014). Coiling and maturation of a high-performamce fibre in hagfish slime gland thread cells. Nature Communications, 5(3534), 1–5.Google Scholar
  212. Wolff, J. O., Rezac, M., Krejci, T., & Gorb, S. N. (2017). Hunting with sticky tape: Functional shift in silk glands of araneophagous ground spiders (Gnaphosidae). The Journal of Experimental Biology, 220(Pt 12), 2250–2259.CrossRefPubMedGoogle Scholar
  213. Yeargan, K. V. (1994). Biology of bolas spiders. Annual Review of Entomology, 39, 81–99.CrossRefGoogle Scholar
  214. Zheden, V., Klepal, W., von Byern, J., Adolf, F. R., Thiel, K., Kowalik, T., & Grunwald, I. (2014). Biochemical analyses of the cement float of the goose barnacle Dosima fascicularis. Biofouling, 30(8), 949–963.CrossRefPubMedGoogle Scholar
  215. Zheden, V., Kovalev, A. E., Gorb, S. N., & Klepal, W. (2015). Characterization of cement float buoyancy in the stalked barnacle Dosima fascicularis (Crustacea, Cirripedia). Interface Focus, 5(1), 20140060.CrossRefPubMedPubMedCentralGoogle Scholar
  216. Zintzen, V., Roberts, C. D., Anderson, M. J., Stewart, A. L., Struthers, C. D., & Harvey, E. S. (2011). Hagfish predatory behaviour and slime defence mechanism. Scientific Reports, 1(131), 1–6.Google Scholar
  217. Zobel-Thropp, P. A., Correa, S. M., Garb, J. E., & Binford, G. J. (2014). Spit and venom from scytodes spiders: A diverse and distinct cocktail. Journal of Proteome Research, 13(2), 817–835.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Janek von Byern
    • 1
  • Carsten Müller
    • 2
  • Karin Voigtländer
    • 3
  • Victoria Dorrer
    • 4
  • Martina Marchetti-Deschmann
    • 4
  • Patrick Flammang
    • 5
  • Georg Mayer
    • 6
  1. 1.Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
  2. 2.University of GreifswaldGreifswaldGermany
  3. 3.Senckenberg Museum für Naturkunde GörlitzGörlitzGermany
  4. 4.Technische Universität WienViennaAustria
  5. 5.Université de MonsMonsBelgium
  6. 6.University of KasselKasselGermany

Personalised recommendations