Skip to main content

Arthropod Corneal Nanocoatings: Diversity, Mechanisms, and Functions

  • Chapter
  • First Online:
Functional Surfaces in Biology III

Part of the book series: Biologically-Inspired Systems ((BISY,volume 10))

Abstract

Corneal surfaces of terrestrial insects and other arthropods are covered with elaborate nanocoatings. Initially described as moth-eye nanostructures – paraboloid nipple-like evaginations regularly assembled on the lenses of some Lepidopterans – they were in recent years discovered to be omnipresent across insect lineages. In addition to the nipple-type morphology, corneal nanocoatings can be built as ridge-, maze-, or dimple-type nanopatterns, with various transitions among these morphologies seen in different species or even within the same specimen. Varying in the height of dozens to hundreds nanometers, and in the diameter being thinner than the wavelength of the visible light, these nanostructures provide the antireflective function to the surfaces they coat. Additional functionalities, such as water-repelling, antifouling, or antibacterial, could also be attributed to them. Turing reaction-diffusion and the block copolymerization mechanisms of molecular self-assembly have been proposed to guide the formation of corneal nanostructures during insect eye development. Both mechanisms envision interactions of two types of molecular agents with different diffusion and/or hydrophobicity properties as the underlying principle of building of the nanostructures. Using model insect organisms, the molecular identities of these agents can be revealed. These studies will elucidate the mechanism of formation and diversity of the corneal nanostructures in arthropods. Further, they will lay the ground for bioengineering, in vivo and in vitro, of novel nanocoatings with desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aghaeipour, M., Anttu, N., Nylund, G., Samuelson, L., Lehmann, S., & Pistol, M.-E. (2014). Tunable absorption resonances in the ultraviolet for InP nanowire arrays. Optics Express, 22(23), 29204–29212.

    Article  PubMed  Google Scholar 

  • Anderson, M. S., & Gaimari, S. D. (2003). Raman-atomic force microscopy of the ommatidial surfaces of dipteran compound eyes. Journal of Structural Biology, 142(3), 364–368.

    Article  PubMed  Google Scholar 

  • Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., Fearing, R., & Full, R. J. (2000). Adhesive force of a single gecko foot-hair. Nature, 405(6787), 681–685.

    Article  CAS  PubMed  Google Scholar 

  • Bernhard, C. G., & Miller, W. H. (1962). A corneal nipple pattern in insect compound eyes. Acta Physiologica Scandinavica, 56(3–4), 385–386.

    Article  CAS  PubMed  Google Scholar 

  • Bernhard, C.G., Miller, W.H., & Møller, A.R. (1965). The insect corneal nipple array: A biological, broad-band impedance transformer that acts as an antireflection coating. Zeitschrift für vergleichende Physiologie, 67(1), 1–25.

    Google Scholar 

  • Bhanot, P., Brink, M., Samos, C.H., Hsieh, J.C., Wang, Y., Macke, J.P., Andrew. D., Nathans, J., & Nusse, R. (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 382(6588), 225–230.

    Google Scholar 

  • Bernhard, C. G., Gemne, G., & Sällström, J. (1970). Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Journal of Comparative Physiology. A, 67(1), 1–25.

    Google Scholar 

  • Bixler, G. D., & Bhushan, B. (2014). Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow. Nanoscale, 6(1), 76–96.

    Article  CAS  PubMed  Google Scholar 

  • Bixler, G. D., Theiss, A., Bhushan, B., & Lee, S. C. (2014). Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. Journal of Colloid and Interface Science, 419, 114–133.

    Article  CAS  PubMed  Google Scholar 

  • Blagodatski, A., Kryuchkov, M., Sergeev, A., Klimov, A. A., Shcherbakov, M. R., Enin, G. A., & Katanaev, V. L. (2014). Under- and over-water halves of Gyrinidae beetle eyes harbor different corneal nanocoatings providing adaptation to the water and air environments. Scientific Reports, 4, 6004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blagodatski, A., Sergeev, A., Kryuchkov, M., Lopatina, Y., & Katanaev, V. L. (2015). Diverse set of Turing nanopatterns coat corneae across insect lineages. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10750–10755.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brongersma, M. L., Cui, Y., & Fan, S. H. (2014). Light management for photovoltaics using high-index nanostructures. Nature Materials, 13(5), 451–460.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., & Chakrabarti, A. (1998). Morphology of thin block copolymer films on chemically patterned substrates. The Journal of Chemical Physics, 108(16), 6897–6905.

    Article  CAS  Google Scholar 

  • Chipman, A. D., Ferrier, D. E., Brena, C., Qu, J., Hughes, D. S., Schroder, R., Torres-Oliva, M., Znassi, N., Jiang, H., Almeida, F. C., et al. (2014). The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biology, 12(11), e1002005.

    Article  PubMed Central  PubMed  Google Scholar 

  • Daglar, B., Khudiyev, T., Demirel, G. B., Buyukserin, F., & Bayindir, M. (2013). Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing. Journal of Materials Chemistry C, 1(47), 7842–7848.

    Article  CAS  Google Scholar 

  • Daly, H.V. (1970). The insects. Structure and function. R. F. Chapman. Elsevier, New York, 1969. Science 168(3935), 1082.

    Google Scholar 

  • Deinega, A., Valuev, I., Potapkin, B., & Lozovik, Y. (2011). Minimizing light reflection from dielectric textured surfaces. Journal of the Optical Society of America. A, 28(5), 770–777.

    Article  Google Scholar 

  • Du, Q. G., Kam, C. H., Demir, H. V., Yu, H. Y., & Sun, X. W. (2011). Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications. Optics Letters, 36(10), 1884–1886.

    Article  CAS  PubMed  Google Scholar 

  • Farrell, A. R., Fitzgerald, G. T., Borah, D., Holmes, D. J., & Morris, A. M. (2009). Chemical interactions and their role in the microphase separation of block copolymer thin films. International Journal of Molecular Sciences, 10(9), 3671–3712.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fasolka, M. J., Harris, D. J., Mayes, A. M., Yoon, M., & Mochrie, S. G. J. (1997). Observed substrate topography-mediated lateral patterning of diblock copolymer films. Physical Review Letters, 79(16), 3018–3021.

    Article  CAS  Google Scholar 

  • Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., & Jiang, L. (2008). Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 24(8), 4114–4119.

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich, A. (2001). A scanning electron-microscopic study of apical contacts in the eye during postembryonic development of Drosophila melanogaster. Cell and Tissue Research, 303(1), 117–128.

    Article  PubMed  Google Scholar 

  • Gao, X., Yan, X., Yao, X., Xu, L., Zhang, K., Zhang, J., Yang, B., & Jiang, L. (2007). The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Advanced Materials, 19(17), 2213–2217.

    Article  CAS  Google Scholar 

  • Gemne, G. (1966). Ultrastructural ontogenesis of cornea and corneal nipples in compound eye of insects. Acta Physiologica Scandinavica, 66(4), 511–512.

    Article  CAS  PubMed  Google Scholar 

  • Gemne, G. (1971). Ontogenesis of corneal surface ultrastructure in nocturnal Lepidoptera. Philosophical Transactions of the Royal Society B, 262(843), 343–363.

    Article  Google Scholar 

  • Gorb, S., & Speck, T. (2017). Biological and biomimetic materials and surfaces. Beilstein Journal of Nanotechnology, 8, 403–407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green, D. W., Watson, G. S., Watson, J., & Abraham, S. J. K. (2012). New biomimetic directions in regenerative ophthalmology. Advance Healthcare Maternité, 1(2), 140–148.

    Article  CAS  Google Scholar 

  • Hamley, I. W. (1998). The physics of block copolymers. Oxford: Oxford University Press.

    Google Scholar 

  • Hamley, I. W., Connell, S. D., Collins, S., Fundin, J., & Yang, Z. (2004). In situ AFM imaging of block copolymer micelles adsorbed on a solid substrate. Abstracts of Papers of the American Chemical Society, 227, 551–551.

    Google Scholar 

  • Han, L., & Zhao, H. P. (2014). Surface antireflection properties of GaN nanostructures with various effective refractive index profiles. Optics Express, 22(26), 31907–31916.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, M. J., Sekeroglu, K., & Demirel, M. C. (2012). Bioinspired directional surfaces for adhesion, wetting, and transport. Advanced Functional Materials, 22(11), 2223–2234.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helbig, R., Nickerl, J., Neinhuis, C., & Werner, C. (2011). Smart skin patterns protect springtails. PLoS One, 6(9), e25105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hensel, R., Neinhuis, C., & Werner, C. (2016). The springtail cuticle as a blueprint for omniphobic surfaces. Chemical Society Reviews, 45(2), 323–341.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova, E. P., Hasan, J., Webb, H. K., Truong, V. K., Watson, G. S., Watson, J. A., Baulin, V. A., Pogodin, S., Wang, J. Y., Tobin, M. J., et al. (2012). Natural bactericidal surfaces: Mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small, 8(16), 2489–2494.

    Article  CAS  PubMed  Google Scholar 

  • Ji, S., Park, J., & Lim, H. (2012). Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: Flat antireflection and color tuning. Nanoscale, 4(15), 4603–4610.

    Article  CAS  PubMed  Google Scholar 

  • Katanaev, V. L., & Kryuchkov, M. V. (2011). The eye of Drosophila as a model system for studying intracellular signaling in ontogenesis and pathogenesis. Biochemistry (Moscow), 76(13), 1556–1581.

    Article  CAS  Google Scholar 

  • Kim, S. O., Solak, H. H., Stoykovich, M. P., Ferrier, N. J., de Pablo, J. J., & Nealey, P. F. (2003). Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature, 424(6947), 411–414.

    Article  CAS  PubMed  Google Scholar 

  • Kondo, S., & Miura, T. (2010). Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 329(5999), 1616–1620.

    Article  CAS  PubMed  Google Scholar 

  • Kryuchkov, M., Katanaev, V. L., Enin, G. A., Sergeev, A., Timchenko, A. A., & Serdyuk, I. N. (2011). Analysis of micro- and nano-structures of the corneal surface of Drosophila and its mutants by atomic force microscopy and optical diffraction. PLoS One, 6(7), e22237.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kryuchkov, M., Lehmann, J., Schaab, J., Cherepanov, V., Blagodatski, A., Fiebig, M., & Katanaev, V. L. (2017a). Alternative moth-eye nanostructures: Antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors. JNanoBiotechnology, 15(1), 61.

    Article  Google Scholar 

  • Kryuchkov, M., Lehmann, J., Schaab, J., Fiebig, M., & Katanaev, V. L. (2017b). Antireflective nanocoatings for UV-sensation: The case of predatory owlfly insects. Journal of Nanobiotechnology, 15(1), 52.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lavanya Devi, A. L., Nongthomba, U., & Bobji, M. S. (2016). Quantitative characterization of adhesion and stiffness of corneal lens of Drosophila melanogaster using atomic force microscopy. Journal of the Mechanical Behavior of Biomedical Materials, 53, 161–173.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. C., & Erb, U. (2013). Grain boundaries and coincidence site lattices in the corneal nanonipple structure of the mourning cloak butterfly. Beilstein Journal of Nanotechnology, 4, 292–299.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee, K. C., & Erb, U. (2015). Remarkable crystal and defect structures in butterfly eye nano-nipple arrays. Arthropod Structure & Development, 44(6), 587–594.

    Article  Google Scholar 

  • Lee, K. C., Yu, Q., & Erb, U. (2016). Mesostructure of ordered corneal nano-nipple arrays: The role of 5–7 coordination defects. Scientific Reports, 6, 28342.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leem, J. W., Yeh, Y., & Yu, J. S. (2012). Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns. Optics Express, 20(4), 4056–4066.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C., Martínez, L. J., & Povinelli, M. L. (2013). Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells. Optics Express, 21(S5), A872–A882.

    Article  PubMed  Google Scholar 

  • Lin, D., Fan, P., Hasman, E., & Brongersma, M. L. (2014). Dielectric gradient metasurface optical elements. Science, 345(6194), 298.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T. L., & Kim, C. J. (2014). Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids. Science, 346(6213), 1096–1100.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Xu, J., Li, Y., & Li, Y. (2010). Aggregate nanostructures of organic molecular materials. Accounts of Chemical Research, 43(12), 1496–1508.

    Article  CAS  PubMed  Google Scholar 

  • Martins, E. R., Li, J., Liu, Y., Depauw, V., Chen, Z., Zhou, J., & Krauss, T. F. (2013). Deterministic quasi-random nanostructures for photon control. Nature Communications, 4, 2665.

    Article  PubMed  Google Scholar 

  • Meyer-Rochow, V. B. (1978). Retina and dioptric apparatus of the dung beetle Euoniticellus africanus. Journal of Insect Physiology, 24(2), 165–179.

    Article  Google Scholar 

  • Meyer-Rochow, V. B., & Stringer, I. A. N. (1993). A system of regular ridges instead of nipples on a compound eye that has to operate near the diffraction limit. Vision Research, 33(18), 2645–2647.

    Article  CAS  PubMed  Google Scholar 

  • Miller, W. H. (1979). Ocular optical filtering. In H. Autrum (Ed.), Handbook of sensory physiology (Vol. VII/6A, pp. 69–143). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Minami, R., Sato, C., Yamahama, Y., Kubo, H., Hariyama, T., & Kimura, K.-i. (2016). An RNAi screen for genes involved in nanoscale protrusion formation on corneal lens in Drosophila melanogaster. Zoological Science, 33(6), 583–591.

    Article  PubMed  Google Scholar 

  • Mishra, M., & Meyer-Rochow, V. B. (2006). Eye ultrastructure in the pollen-feeding beetle, Xanthochroa luteipennis (Coleoptera: Cucujiformia: Oedemeridae). Journal of Electron Microscopy, 55(6), 289–300.

    Article  PubMed  Google Scholar 

  • Miura, T., & Maini, P. K. (2004). Periodic pattern formation in reactiondiffusion systems: An introduction for numerical simulation. Anatomical Science International, 79(3), 112–123.

    Article  PubMed  Google Scholar 

  • Nakamasu, A., Takahashi, G., Kanbe, A., & Kondo, S. (2009). Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8429–8434.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nickerl, J., Tsurkan, M., Hensel, R., Neinhuis, C., & Werner, C. (2014). The multi-layered protective cuticle of Collembola: A chemical analysis. Journal of The Royal Society Interface, 11(99), 20140619.

    Article  PubMed Central  Google Scholar 

  • Oskooi, A., Favuzzi, P. A., Tanaka, Y., Shigeta, H., Kawakami, Y., & Noda, S. (2012). Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics. Applied Physics Letters, 100(18), 181110.

    Article  Google Scholar 

  • Peisker, H., & Gorb, S. N. (2010). Always on the bright side of life: Anti-adhesive properties of insect ommatidia grating. The Journal of Experimental Biology, 213(20), 3457–3462.

    Article  PubMed  Google Scholar 

  • Pogodin, S., Hasan, J., Baulin, V. A., Webb, H. K., Truong, V. K., Phong Nguyen, T. H., Boshkovikj, V., Fluke, C. J., Watson, G. S., Watson, J. A., et al. (2013). Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophysical Journal, 104(4), 835–840.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pratesi, F., Burresi, M., Riboli, F., Vynck, K., & Wiersma, D. S. (2013). Disordered photonic structures for light harvesting in solar cells. Optics Express, 21(S3), A460–A468.

    Article  PubMed  Google Scholar 

  • Raspopovic, J., Marcon, L., Russo, L., & Sharpe, J. (2014). Digit patterning is controlled by a bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science, 345(6196), 566–570.

    Article  CAS  PubMed  Google Scholar 

  • Raut, H. K., Ganesh, V. A., Nair, A. S., & Ramakrishna, S. (2011). Anti-reflective coatings: A critical, in-depth review. Energy Environmental Sciences, 4(10), 3779–3804.

    Article  CAS  Google Scholar 

  • Schuster, C. S., Morawiec, S., Mendes, M. J., Patrini, M., Martins, E. R., Lewis, L., Crupi, I., & Krauss, T. F. (2015). Plasmonic and diffractive nanostructures for light trapping─an experimental comparison. Optica, 2(3), 194–200.

    Article  CAS  Google Scholar 

  • Sergeev, A., Timchenko, A. A., Kryuchkov, M., Blagodatski, A., Enin, G. A., & Katanaev, V. L. (2015). Origin of order in bionanostructures. RSC Advances, 5(78), 63521–63527.

    Article  CAS  Google Scholar 

  • Sick, S., Reinker, S., Timmer, J., & Schlake, T. (2006). WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science, 314(5804), 1447–1450.

    Article  CAS  PubMed  Google Scholar 

  • Siddique, R. H., Gomard, G., & Holscher, H. (2015). The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly. Nature Communications, 6, 6909.

    Article  CAS  PubMed  Google Scholar 

  • Son, J., Verma, L. K., Danner, A. J., Bhatia, C. S., & Yang, H. (2011). Enhancement of optical transmission with random nanohole structures. Optics Express, 19(S1), A35–A40.

    Article  CAS  PubMed  Google Scholar 

  • Stavenga, D. G. (2006). Invertebrate superposition eyes-structures that behave like metamaterial with negative refractive index. Journal of the European Optical Society-Rapid Publications, 1, 06010.

    Article  Google Scholar 

  • Stavenga, D. G., Foletti, S., Palasantzas, G., & Arikawa, K. (2006). Light on the moth-eye corneal nipple array of butterflies. Proceedings of the Royal Society B, 273(1587), 661–667.

    Article  CAS  PubMed  Google Scholar 

  • Stavroulakis, P. I., Boden, S. A., Johnson, T., & Bagnall, D. M. (2013). Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays. Optics Express, 21(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Sun, T. L., Feng, L., Gao, X. F., & Jiang, L. (2005). Bioinspired surfaces with special wettability. Accounts of Chemical Research, 38(8), 644–652.

    Article  CAS  PubMed  Google Scholar 

  • Sun, M., Liang, A., Watson, G. S., Watson, J. A., Zheng, Y., Ju, J., & Jiang, L. (2012). Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings. PLoS One, 7(4), e35056.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka, G., Parker, A. R., Siveter, D. J., Maeda, H., & Furutani, M. (2009). An exceptionally well-preserved Eocene dolichopodid fly eye: Function and evolutionary significance. Proceedings of the Royal Society B, 276(1659), 1015–1019.

    Article  PubMed  Google Scholar 

  • Toh, Y., & Okamura, J.-y. (2007). Morphological and optical properties of the corneal lens and retinal structure in the posterior large stemma of the tiger beetle larva. Vision Research, 47(13), 1756–1768.

    Article  PubMed  Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237(641), 37–72.

    Article  Google Scholar 

  • van Lare, M. C., & Polman, A. (2015). Optimized scattering power spectral density of photovoltaic light-trapping patterns. ACS Photonics, 2(7), 822–831.

    Article  Google Scholar 

  • Varela, F. G., & Wiitanen, W. (1970). The optics of the compound eye of the honeybee (Apis mellifera). The Journal of General Physiology, 55(3), 336–358.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vigneron, J. P., Rassart, M., Vertesy, Z., Kertesz, K., Sarrazin, M. L., Biro, L. P., Ertz, D., & Lousse, V. (2005). Optical structure and function of the white filamentary hair covering the edelweiss bracts. Physical Review E, 71(1), 011906.

    Article  Google Scholar 

  • Watson, G. S., Watson, J. A., & Cribb, B. W. (2017). Diversity of cuticular micro- and nanostructures on insects: Properties, functions, and potential applications. Annual Review of Entomology, 62(1), 185–205.

    Article  CAS  PubMed  Google Scholar 

  • Wiersma, D. S. (2013). Disordered photonics. Nature Photonics, 7(3), 188–196.

    Article  CAS  Google Scholar 

  • Wilson, S. J., & Hutley, M. C. (1982). The optical properties of ‘moth eye’ antireflection surfaces. Optica Acta, 29(7), 993–1009.

    Article  Google Scholar 

  • Wisdom, K. M., Watson, J. A., Qu, X., Liu, F., Watson, G. S., & Chen, C.-H. (2013). Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 7992–7997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wood, L. (2017). Global nano coating market (2016–2022): Increasing technological advancement is a key driver ─ research and markets. http://www.researchandmarkets.com/research/sqcx6v/global_nano

  • Wu, W., Huang, J. Y., Jia, S. J., Kowalewski, T., Matyjaszewski, K., Pakula, T., Gitsas, A., & Floudas, G. (2005). Self-assembly of pODMA-b-ptBA-b-pODMA triblock copolymers in bulk and on surfaces. A quantitative SAXS/AFM comparison. Langmuir, 21(21), 9721–9727.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, S. G., Yang, X. M., Edwards, E. W., La, Y. H., & Nealey, P. F. (2005). Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays. Nanotechnology, 16(7), 324–329.

    Article  CAS  Google Scholar 

  • Xin, Y., Jin, H., Feng, G., Hongjie, L., Laixi, S., Lianghong, Y., Xiaodong, J., Weidong, W., & Wanguo, Z. (2016). High power laser antireflection subwavelength grating on fused silica by colloidal lithography. Journal of Physics D: Applied Physics, 49(26), 265104.

    Article  Google Scholar 

  • Xue, F., Liu, J., Guo, L., Zhang, L., & Li, Q. (2015). Theoretical study on the bactericidal nature of nanopatterned surfaces. Journal of Theoretical Biology, 385, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, J. W., Lee, K. J., & Magnusson, R. (2015). Ultra-sparse dielectric nanowire grids as wideband reflectors and polarizers. Optics Express, 23(22), 28849–28856.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y. F., Zhu, A. Y., Paniagua-Domínguez, R., Fu, Y. H., Luk’yanchuk, B., & Kuznetsov, A. I. (2015). High-transmission dielectric metasurface with 2p phase control at visible wavelengths. Laser & Photonics Reviews, 9(4), 412–418.

    Article  CAS  Google Scholar 

  • Zhou, L., Dong, X., Zhou, Y., Su, W., Chen, X., Zhu, Y., & Shen, S. (2015). Multiscale micro–nano nested structures: Engineered surface morphology for efficient light escaping in organic light-emitting diodes. ACS Applied Materials & Interfaces, 7(48), 26989–26998.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir L. Katanaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kryuchkov, M., Blagodatski, A., Cherepanov, V., Katanaev, V.L. (2017). Arthropod Corneal Nanocoatings: Diversity, Mechanisms, and Functions. In: Gorb, S., Gorb, E. (eds) Functional Surfaces in Biology III. Biologically-Inspired Systems, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-74144-4_2

Download citation

Publish with us

Policies and ethics