Abstract
Corneal surfaces of terrestrial insects and other arthropods are covered with elaborate nanocoatings. Initially described as moth-eye nanostructures – paraboloid nipple-like evaginations regularly assembled on the lenses of some Lepidopterans – they were in recent years discovered to be omnipresent across insect lineages. In addition to the nipple-type morphology, corneal nanocoatings can be built as ridge-, maze-, or dimple-type nanopatterns, with various transitions among these morphologies seen in different species or even within the same specimen. Varying in the height of dozens to hundreds nanometers, and in the diameter being thinner than the wavelength of the visible light, these nanostructures provide the antireflective function to the surfaces they coat. Additional functionalities, such as water-repelling, antifouling, or antibacterial, could also be attributed to them. Turing reaction-diffusion and the block copolymerization mechanisms of molecular self-assembly have been proposed to guide the formation of corneal nanostructures during insect eye development. Both mechanisms envision interactions of two types of molecular agents with different diffusion and/or hydrophobicity properties as the underlying principle of building of the nanostructures. Using model insect organisms, the molecular identities of these agents can be revealed. These studies will elucidate the mechanism of formation and diversity of the corneal nanostructures in arthropods. Further, they will lay the ground for bioengineering, in vivo and in vitro, of novel nanocoatings with desired properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aghaeipour, M., Anttu, N., Nylund, G., Samuelson, L., Lehmann, S., & Pistol, M.-E. (2014). Tunable absorption resonances in the ultraviolet for InP nanowire arrays. Optics Express, 22(23), 29204–29212.
Anderson, M. S., & Gaimari, S. D. (2003). Raman-atomic force microscopy of the ommatidial surfaces of dipteran compound eyes. Journal of Structural Biology, 142(3), 364–368.
Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., Fearing, R., & Full, R. J. (2000). Adhesive force of a single gecko foot-hair. Nature, 405(6787), 681–685.
Bernhard, C. G., & Miller, W. H. (1962). A corneal nipple pattern in insect compound eyes. Acta Physiologica Scandinavica, 56(3–4), 385–386.
Bernhard, C.G., Miller, W.H., & Møller, A.R. (1965). The insect corneal nipple array: A biological, broad-band impedance transformer that acts as an antireflection coating. Zeitschrift für vergleichende Physiologie, 67(1), 1–25.
Bhanot, P., Brink, M., Samos, C.H., Hsieh, J.C., Wang, Y., Macke, J.P., Andrew. D., Nathans, J., & Nusse, R. (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 382(6588), 225–230.
Bernhard, C. G., Gemne, G., & Sällström, J. (1970). Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Journal of Comparative Physiology. A, 67(1), 1–25.
Bixler, G. D., & Bhushan, B. (2014). Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow. Nanoscale, 6(1), 76–96.
Bixler, G. D., Theiss, A., Bhushan, B., & Lee, S. C. (2014). Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. Journal of Colloid and Interface Science, 419, 114–133.
Blagodatski, A., Kryuchkov, M., Sergeev, A., Klimov, A. A., Shcherbakov, M. R., Enin, G. A., & Katanaev, V. L. (2014). Under- and over-water halves of Gyrinidae beetle eyes harbor different corneal nanocoatings providing adaptation to the water and air environments. Scientific Reports, 4, 6004.
Blagodatski, A., Sergeev, A., Kryuchkov, M., Lopatina, Y., & Katanaev, V. L. (2015). Diverse set of Turing nanopatterns coat corneae across insect lineages. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10750–10755.
Brongersma, M. L., Cui, Y., & Fan, S. H. (2014). Light management for photovoltaics using high-index nanostructures. Nature Materials, 13(5), 451–460.
Chen, H., & Chakrabarti, A. (1998). Morphology of thin block copolymer films on chemically patterned substrates. The Journal of Chemical Physics, 108(16), 6897–6905.
Chipman, A. D., Ferrier, D. E., Brena, C., Qu, J., Hughes, D. S., Schroder, R., Torres-Oliva, M., Znassi, N., Jiang, H., Almeida, F. C., et al. (2014). The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biology, 12(11), e1002005.
Daglar, B., Khudiyev, T., Demirel, G. B., Buyukserin, F., & Bayindir, M. (2013). Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing. Journal of Materials Chemistry C, 1(47), 7842–7848.
Daly, H.V. (1970). The insects. Structure and function. R. F. Chapman. Elsevier, New York, 1969. Science 168(3935), 1082.
Deinega, A., Valuev, I., Potapkin, B., & Lozovik, Y. (2011). Minimizing light reflection from dielectric textured surfaces. Journal of the Optical Society of America. A, 28(5), 770–777.
Du, Q. G., Kam, C. H., Demir, H. V., Yu, H. Y., & Sun, X. W. (2011). Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications. Optics Letters, 36(10), 1884–1886.
Farrell, A. R., Fitzgerald, G. T., Borah, D., Holmes, D. J., & Morris, A. M. (2009). Chemical interactions and their role in the microphase separation of block copolymer thin films. International Journal of Molecular Sciences, 10(9), 3671–3712.
Fasolka, M. J., Harris, D. J., Mayes, A. M., Yoon, M., & Mochrie, S. G. J. (1997). Observed substrate topography-mediated lateral patterning of diblock copolymer films. Physical Review Letters, 79(16), 3018–3021.
Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., & Jiang, L. (2008). Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 24(8), 4114–4119.
Fröhlich, A. (2001). A scanning electron-microscopic study of apical contacts in the eye during postembryonic development of Drosophila melanogaster. Cell and Tissue Research, 303(1), 117–128.
Gao, X., Yan, X., Yao, X., Xu, L., Zhang, K., Zhang, J., Yang, B., & Jiang, L. (2007). The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Advanced Materials, 19(17), 2213–2217.
Gemne, G. (1966). Ultrastructural ontogenesis of cornea and corneal nipples in compound eye of insects. Acta Physiologica Scandinavica, 66(4), 511–512.
Gemne, G. (1971). Ontogenesis of corneal surface ultrastructure in nocturnal Lepidoptera. Philosophical Transactions of the Royal Society B, 262(843), 343–363.
Gorb, S., & Speck, T. (2017). Biological and biomimetic materials and surfaces. Beilstein Journal of Nanotechnology, 8, 403–407.
Green, D. W., Watson, G. S., Watson, J., & Abraham, S. J. K. (2012). New biomimetic directions in regenerative ophthalmology. Advance Healthcare Maternité, 1(2), 140–148.
Hamley, I. W. (1998). The physics of block copolymers. Oxford: Oxford University Press.
Hamley, I. W., Connell, S. D., Collins, S., Fundin, J., & Yang, Z. (2004). In situ AFM imaging of block copolymer micelles adsorbed on a solid substrate. Abstracts of Papers of the American Chemical Society, 227, 551–551.
Han, L., & Zhao, H. P. (2014). Surface antireflection properties of GaN nanostructures with various effective refractive index profiles. Optics Express, 22(26), 31907–31916.
Hancock, M. J., Sekeroglu, K., & Demirel, M. C. (2012). Bioinspired directional surfaces for adhesion, wetting, and transport. Advanced Functional Materials, 22(11), 2223–2234.
Helbig, R., Nickerl, J., Neinhuis, C., & Werner, C. (2011). Smart skin patterns protect springtails. PLoS One, 6(9), e25105.
Hensel, R., Neinhuis, C., & Werner, C. (2016). The springtail cuticle as a blueprint for omniphobic surfaces. Chemical Society Reviews, 45(2), 323–341.
Ivanova, E. P., Hasan, J., Webb, H. K., Truong, V. K., Watson, G. S., Watson, J. A., Baulin, V. A., Pogodin, S., Wang, J. Y., Tobin, M. J., et al. (2012). Natural bactericidal surfaces: Mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small, 8(16), 2489–2494.
Ji, S., Park, J., & Lim, H. (2012). Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: Flat antireflection and color tuning. Nanoscale, 4(15), 4603–4610.
Katanaev, V. L., & Kryuchkov, M. V. (2011). The eye of Drosophila as a model system for studying intracellular signaling in ontogenesis and pathogenesis. Biochemistry (Moscow), 76(13), 1556–1581.
Kim, S. O., Solak, H. H., Stoykovich, M. P., Ferrier, N. J., de Pablo, J. J., & Nealey, P. F. (2003). Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature, 424(6947), 411–414.
Kondo, S., & Miura, T. (2010). Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 329(5999), 1616–1620.
Kryuchkov, M., Katanaev, V. L., Enin, G. A., Sergeev, A., Timchenko, A. A., & Serdyuk, I. N. (2011). Analysis of micro- and nano-structures of the corneal surface of Drosophila and its mutants by atomic force microscopy and optical diffraction. PLoS One, 6(7), e22237.
Kryuchkov, M., Lehmann, J., Schaab, J., Cherepanov, V., Blagodatski, A., Fiebig, M., & Katanaev, V. L. (2017a). Alternative moth-eye nanostructures: Antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors. J. NanoBiotechnology, 15(1), 61.
Kryuchkov, M., Lehmann, J., Schaab, J., Fiebig, M., & Katanaev, V. L. (2017b). Antireflective nanocoatings for UV-sensation: The case of predatory owlfly insects. Journal of Nanobiotechnology, 15(1), 52.
Lavanya Devi, A. L., Nongthomba, U., & Bobji, M. S. (2016). Quantitative characterization of adhesion and stiffness of corneal lens of Drosophila melanogaster using atomic force microscopy. Journal of the Mechanical Behavior of Biomedical Materials, 53, 161–173.
Lee, K. C., & Erb, U. (2013). Grain boundaries and coincidence site lattices in the corneal nanonipple structure of the mourning cloak butterfly. Beilstein Journal of Nanotechnology, 4, 292–299.
Lee, K. C., & Erb, U. (2015). Remarkable crystal and defect structures in butterfly eye nano-nipple arrays. Arthropod Structure & Development, 44(6), 587–594.
Lee, K. C., Yu, Q., & Erb, U. (2016). Mesostructure of ordered corneal nano-nipple arrays: The role of 5–7 coordination defects. Scientific Reports, 6, 28342.
Leem, J. W., Yeh, Y., & Yu, J. S. (2012). Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns. Optics Express, 20(4), 4056–4066.
Lin, C., Martínez, L. J., & Povinelli, M. L. (2013). Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells. Optics Express, 21(S5), A872–A882.
Lin, D., Fan, P., Hasman, E., & Brongersma, M. L. (2014). Dielectric gradient metasurface optical elements. Science, 345(6194), 298.
Liu, T. L., & Kim, C. J. (2014). Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids. Science, 346(6213), 1096–1100.
Liu, H., Xu, J., Li, Y., & Li, Y. (2010). Aggregate nanostructures of organic molecular materials. Accounts of Chemical Research, 43(12), 1496–1508.
Martins, E. R., Li, J., Liu, Y., Depauw, V., Chen, Z., Zhou, J., & Krauss, T. F. (2013). Deterministic quasi-random nanostructures for photon control. Nature Communications, 4, 2665.
Meyer-Rochow, V. B. (1978). Retina and dioptric apparatus of the dung beetle Euoniticellus africanus. Journal of Insect Physiology, 24(2), 165–179.
Meyer-Rochow, V. B., & Stringer, I. A. N. (1993). A system of regular ridges instead of nipples on a compound eye that has to operate near the diffraction limit. Vision Research, 33(18), 2645–2647.
Miller, W. H. (1979). Ocular optical filtering. In H. Autrum (Ed.), Handbook of sensory physiology (Vol. VII/6A, pp. 69–143). Berlin/Heidelberg/New York: Springer.
Minami, R., Sato, C., Yamahama, Y., Kubo, H., Hariyama, T., & Kimura, K.-i. (2016). An RNAi screen for genes involved in nanoscale protrusion formation on corneal lens in Drosophila melanogaster. Zoological Science, 33(6), 583–591.
Mishra, M., & Meyer-Rochow, V. B. (2006). Eye ultrastructure in the pollen-feeding beetle, Xanthochroa luteipennis (Coleoptera: Cucujiformia: Oedemeridae). Journal of Electron Microscopy, 55(6), 289–300.
Miura, T., & Maini, P. K. (2004). Periodic pattern formation in reaction─diffusion systems: An introduction for numerical simulation. Anatomical Science International, 79(3), 112–123.
Nakamasu, A., Takahashi, G., Kanbe, A., & Kondo, S. (2009). Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8429–8434.
Nickerl, J., Tsurkan, M., Hensel, R., Neinhuis, C., & Werner, C. (2014). The multi-layered protective cuticle of Collembola: A chemical analysis. Journal of The Royal Society Interface, 11(99), 20140619.
Oskooi, A., Favuzzi, P. A., Tanaka, Y., Shigeta, H., Kawakami, Y., & Noda, S. (2012). Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics. Applied Physics Letters, 100(18), 181110.
Peisker, H., & Gorb, S. N. (2010). Always on the bright side of life: Anti-adhesive properties of insect ommatidia grating. The Journal of Experimental Biology, 213(20), 3457–3462.
Pogodin, S., Hasan, J., Baulin, V. A., Webb, H. K., Truong, V. K., Phong Nguyen, T. H., Boshkovikj, V., Fluke, C. J., Watson, G. S., Watson, J. A., et al. (2013). Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophysical Journal, 104(4), 835–840.
Pratesi, F., Burresi, M., Riboli, F., Vynck, K., & Wiersma, D. S. (2013). Disordered photonic structures for light harvesting in solar cells. Optics Express, 21(S3), A460–A468.
Raspopovic, J., Marcon, L., Russo, L., & Sharpe, J. (2014). Digit patterning is controlled by a bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science, 345(6196), 566–570.
Raut, H. K., Ganesh, V. A., Nair, A. S., & Ramakrishna, S. (2011). Anti-reflective coatings: A critical, in-depth review. Energy Environmental Sciences, 4(10), 3779–3804.
Schuster, C. S., Morawiec, S., Mendes, M. J., Patrini, M., Martins, E. R., Lewis, L., Crupi, I., & Krauss, T. F. (2015). Plasmonic and diffractive nanostructures for light trapping─an experimental comparison. Optica, 2(3), 194–200.
Sergeev, A., Timchenko, A. A., Kryuchkov, M., Blagodatski, A., Enin, G. A., & Katanaev, V. L. (2015). Origin of order in bionanostructures. RSC Advances, 5(78), 63521–63527.
Sick, S., Reinker, S., Timmer, J., & Schlake, T. (2006). WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science, 314(5804), 1447–1450.
Siddique, R. H., Gomard, G., & Holscher, H. (2015). The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly. Nature Communications, 6, 6909.
Son, J., Verma, L. K., Danner, A. J., Bhatia, C. S., & Yang, H. (2011). Enhancement of optical transmission with random nanohole structures. Optics Express, 19(S1), A35–A40.
Stavenga, D. G. (2006). Invertebrate superposition eyes-structures that behave like metamaterial with negative refractive index. Journal of the European Optical Society-Rapid Publications, 1, 06010.
Stavenga, D. G., Foletti, S., Palasantzas, G., & Arikawa, K. (2006). Light on the moth-eye corneal nipple array of butterflies. Proceedings of the Royal Society B, 273(1587), 661–667.
Stavroulakis, P. I., Boden, S. A., Johnson, T., & Bagnall, D. M. (2013). Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays. Optics Express, 21(1), 1–11.
Sun, T. L., Feng, L., Gao, X. F., & Jiang, L. (2005). Bioinspired surfaces with special wettability. Accounts of Chemical Research, 38(8), 644–652.
Sun, M., Liang, A., Watson, G. S., Watson, J. A., Zheng, Y., Ju, J., & Jiang, L. (2012). Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings. PLoS One, 7(4), e35056.
Tanaka, G., Parker, A. R., Siveter, D. J., Maeda, H., & Furutani, M. (2009). An exceptionally well-preserved Eocene dolichopodid fly eye: Function and evolutionary significance. Proceedings of the Royal Society B, 276(1659), 1015–1019.
Toh, Y., & Okamura, J.-y. (2007). Morphological and optical properties of the corneal lens and retinal structure in the posterior large stemma of the tiger beetle larva. Vision Research, 47(13), 1756–1768.
Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237(641), 37–72.
van Lare, M. C., & Polman, A. (2015). Optimized scattering power spectral density of photovoltaic light-trapping patterns. ACS Photonics, 2(7), 822–831.
Varela, F. G., & Wiitanen, W. (1970). The optics of the compound eye of the honeybee (Apis mellifera). The Journal of General Physiology, 55(3), 336–358.
Vigneron, J. P., Rassart, M., Vertesy, Z., Kertesz, K., Sarrazin, M. L., Biro, L. P., Ertz, D., & Lousse, V. (2005). Optical structure and function of the white filamentary hair covering the edelweiss bracts. Physical Review E, 71(1), 011906.
Watson, G. S., Watson, J. A., & Cribb, B. W. (2017). Diversity of cuticular micro- and nanostructures on insects: Properties, functions, and potential applications. Annual Review of Entomology, 62(1), 185–205.
Wiersma, D. S. (2013). Disordered photonics. Nature Photonics, 7(3), 188–196.
Wilson, S. J., & Hutley, M. C. (1982). The optical properties of ‘moth eye’ antireflection surfaces. Optica Acta, 29(7), 993–1009.
Wisdom, K. M., Watson, J. A., Qu, X., Liu, F., Watson, G. S., & Chen, C.-H. (2013). Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 7992–7997.
Wood, L. (2017). Global nano coating market (2016–2022): Increasing technological advancement is a key driver ─ research and markets. http://www.researchandmarkets.com/research/sqcx6v/global_nano
Wu, W., Huang, J. Y., Jia, S. J., Kowalewski, T., Matyjaszewski, K., Pakula, T., Gitsas, A., & Floudas, G. (2005). Self-assembly of pODMA-b-ptBA-b-pODMA triblock copolymers in bulk and on surfaces. A quantitative SAXS/AFM comparison. Langmuir, 21(21), 9721–9727.
Xiao, S. G., Yang, X. M., Edwards, E. W., La, Y. H., & Nealey, P. F. (2005). Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays. Nanotechnology, 16(7), 324–329.
Xin, Y., Jin, H., Feng, G., Hongjie, L., Laixi, S., Lianghong, Y., Xiaodong, J., Weidong, W., & Wanguo, Z. (2016). High power laser antireflection subwavelength grating on fused silica by colloidal lithography. Journal of Physics D: Applied Physics, 49(26), 265104.
Xue, F., Liu, J., Guo, L., Zhang, L., & Li, Q. (2015). Theoretical study on the bactericidal nature of nanopatterned surfaces. Journal of Theoretical Biology, 385, 1–7.
Yoon, J. W., Lee, K. J., & Magnusson, R. (2015). Ultra-sparse dielectric nanowire grids as wideband reflectors and polarizers. Optics Express, 23(22), 28849–28856.
Yu, Y. F., Zhu, A. Y., Paniagua-Domínguez, R., Fu, Y. H., Luk’yanchuk, B., & Kuznetsov, A. I. (2015). High-transmission dielectric metasurface with 2p phase control at visible wavelengths. Laser & Photonics Reviews, 9(4), 412–418.
Zhou, L., Dong, X., Zhou, Y., Su, W., Chen, X., Zhu, Y., & Shen, S. (2015). Multiscale micro–nano nested structures: Engineered surface morphology for efficient light escaping in organic light-emitting diodes. ACS Applied Materials & Interfaces, 7(48), 26989–26998.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Kryuchkov, M., Blagodatski, A., Cherepanov, V., Katanaev, V.L. (2017). Arthropod Corneal Nanocoatings: Diversity, Mechanisms, and Functions. In: Gorb, S., Gorb, E. (eds) Functional Surfaces in Biology III. Biologically-Inspired Systems, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-74144-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-74144-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-74143-7
Online ISBN: 978-3-319-74144-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)