Mucus Matters: The Slippery and Complex Surfaces of Fish

Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 10)

Abstract

Teleost scales are extremely diverse in morphology, with different categories (cycloid, crenate, spinoid, ctenoid) once used to define major groups of fish. We describe these different classical categories of scales and discuss the structure and potential function of small features of scale morphology such as spines, ctenii, radii, and circuli. Modern techniques now make analysis of scale morphology using three-dimensional quantitative data possible. This ability is crucial because many of the hydrodynamic and protective hypotheses concerning the function of scales are dependent on three-dimensional structure. We discuss different techniques to investigate and image the structure of fish scales and skin, and we highlight gel-based surface profilometry as a new valuable tool for studying fish skin. In addition to bony scales, fish skin is also covered by an epidermis that secretes mucus that can coat the exterior of scales. Fish scales are often studied in isolation with the epidermis removed; here we present topographic, three-dimensional, analyses of fish skin surfaces from seven species with the mucus, epidermis, and relative positions of scales intact. We compare these images qualitatively and quantitatively to the same individuals with the epidermis and mucus removed to show a previously unexplored axis of diversity in fish: how mucus and epidermis interact with scale morphology to create surface texture. The three-dimensional structure of fish skin has important implications for hydrodynamic function during locomotion, but this remains a largely unexplored area.

Notes

Acknowledgements

We would like to acknowledge James Weaver for his imaging expertise (in particular for the images in Fig. 10.5), and Kimo Johnson for his assistance with GelSight profilometry measurements. We acknowledge Karsten Hartel and Andrew Williston with assistance in accessing specimens and Dr. Lex Smits for introducing us to k+. The research reported here was supported by ONR MURI Grant N000141410533 monitored by Dr. Bob Brizzolara, HFSP Young Investigators Grant (RGY0067- 2013) to James Weaver, and NSF GRF 2014162421 awarded to D.K.W.

References

  1. Aleyev, Y. G. (1977). Nekton. Hague: Dr. W. Junk b.v. Publishers.CrossRefGoogle Scholar
  2. Anderson, E. J., McGillis, W. R., & Grosenbaugh, M. A. (2001). The boundary layer of swimming fish. The Journal of Experimental Biology, 204, 81–102.PubMedGoogle Scholar
  3. Batts, B. S. (1964). Lepidology of the adult pleuronectiform fishes of Puget Sound, Washington. Copeia, 4, 666–673.CrossRefGoogle Scholar
  4. Beardsley, G. L. (1967). Age, growth, and reproduction of the Dolphin, Coryphaena hippurus, in the Straits of Florida. Copeia, 1967, 441.CrossRefGoogle Scholar
  5. Bereiter-Hahn, J., & Zylberberg, L. (1993). Regeneration of teleost fish scale. Comparative Biochemistry and Physiology, 105A, 625–641.CrossRefGoogle Scholar
  6. Bergman, J. N., Lajeunesse, M. J., & Motta, P. J. (2017). Teeth penetration force of the tiger shark Galeocerdo cuvier and sandbar shark Carcharhinus plumbeus. Journal of Fish Biology, 91, 460–472.CrossRefPubMedGoogle Scholar
  7. Bernadsky, G., Sar, N., & Rosenberg, E. (1993). Drag reduction of fish skin mucus: Relationship to mode of swimming and size. Journal of Fish Biology, 42, 797–800.CrossRefGoogle Scholar
  8. Besseau, L., & Bouligand, Y. (1998). The twisted collagen network of the box-fish scutes. Tissue & Cell, 30, 251–260.CrossRefGoogle Scholar
  9. Bone, Q. (1972). Buoyancy and hydrodynamic functions of integument in the Castor oil fish, Ruvettus pretiosus (Pisces: Gempylidae). Copeia, 1972, 78–87.CrossRefGoogle Scholar
  10. Browning, A., Ortiz, C., & Boyce, M. C. (2013). Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues. Journal of the Mechanical Behavior of Biomedical Materials, 19, 75–86.CrossRefPubMedGoogle Scholar
  11. Burdak, V. D. (1986). Morphologie fonctionnelle du tegument ecailleux des poissons. Cybium, 10, 1–128.Google Scholar
  12. Casselman, J. M. (1990). Growth and relative size of calcified structures of fish growth and relative size of calcified structures of fish. Transactions of the American Fisheries Society, 119, 673–688.CrossRefGoogle Scholar
  13. Chintapalli, R. K., Mirkhalaf, M., Dastjerdi, A. K., & Barthelat, F. (2014). Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms. Bioinspiration & Biomimetics, 9, 36005.CrossRefGoogle Scholar
  14. Daniel, T. L. (1981). Fish mucus: In situ measurements of polymer drag reduction. The Biological Bulletin, 160, 376–382.CrossRefGoogle Scholar
  15. Daniels, R. A. (1996). Guide to the identification of scales of inland fishes of northeastern North America. New York State Museum Bulletin, 488, 1–93.Google Scholar
  16. Dapar, M. L. G., Torres, M. A. J., Fabricante, P. K., & Demayo, C. G. (2012). Scale morphology of the Indian goatfish, Parapeneus indicus (Shaw, 1803) (Perciformes: Mullidae). Advance Envirronmental Biologico, 6, 1426–1432.Google Scholar
  17. Descamps, E., Sochacka, A., de Kegel, B., Van Loo, D., Hoorebeke, L., & Adriaens, D. (2014). Soft tissue discrimination with contrast agents using micro-ct scanning. Belgian Journal of Zoology, 144, 20–40.Google Scholar
  18. Duro-Royo, J., Zolotovsky, K., Mogas-Soldevila, L., Varshney, S., Oxman, N., Boyce, M. C., & Ortiz, C. (2015). MetaMesh: A hierarchical computational model for design and fabrication of biomimetic armored surfaces. Computer-Aided Design, 60, 14–27.CrossRefGoogle Scholar
  19. Esmaeili, H. R., Gholamifard, A., Zarei, N., & Arshadi, A. (2012). Scale structure of a cyprinid fish, Garra rossica (Nikol’skii, 1900) using scanning electron microscope (SEM). International Journal of Science, Technology and Society, 4, 487–492.Google Scholar
  20. Esteban, M. Á. (2012). An overview of the immunological defenses in fish skin. ISRN Immunology, 2012, 1–29.CrossRefGoogle Scholar
  21. Fast, M. D., Sims, D. E., Burka, J. F., Mustafa, A., & Ross, N. W. (2002). Skin morphology and humoral non-specific defence parameters of mucus and plasma in rainbow trout, coho and Atlantic salmon. Comparative Biochemistry and Physiology A, 132, 645–657.CrossRefGoogle Scholar
  22. Ghosh, R., Ebrahimi, H., & Vaziri, A. (2014). Contact kinematics of biomimetic scales. Applied Physics Letters. 105, 233701-1-233701-5.Google Scholar
  23. Gignac, P. M., Kley, N. J., Clarke, J. A., Colbert, M. W., Morhardt, A. C., Cerio, D., Cost, I. N., Cox, P. G., Daza, J. D., Early, C. M., et al. (2016). Diffusible iodine-based contrast-enhanced computed tomography (diceCT): An emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. Journal of Anatomy, 228, 889–909.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hawkes, J. W. (1974). The structure of fish skin I. General organization. Cell and Tissue Research, 149, 147–158.CrossRefPubMedGoogle Scholar
  25. Hill, K. T., Cailliet, G. M., & Radtke, R. L. (1989). A comparative analysis of growth zones in four calcified structures of Pacific Blue Marlin, Makaira nigricans. Fishery Bulletin, 87, 829–843.Google Scholar
  26. Huysseune, A., & Sire, J.-Y. (1998). Evolution of patterns and processes in teeth and tooth-related tissues in non-mammalian vertebrates. European Journal of Oral Sciences, 106, 437–481.CrossRefPubMedGoogle Scholar
  27. Ibañez, A. L., Cowx, I. G., & O’Higgins, P. (2007). Geometric morphometric analysis of fish scales for identifying genera, species, and local populations within the Mugilidae. Canadian Journal of Fisheries and Aquatic Sciences, 1100, 1091–1100.CrossRefGoogle Scholar
  28. Ibañez, A. L., Cowx, I. G., & O’Higgins, P. (2009). Variation in elasmoid fish scale patterns is informative with regard to taxon and swimming mode. Zoological Journal of the Linnean Society, 155, 834–844.CrossRefGoogle Scholar
  29. Jawad, L. A. (2005). Comparative scale morphology and squamation patterns in triplefins (Pisces: Teleostei: Perciformes: Tripterygiidae). Tuhinga, 16, 137–167.Google Scholar
  30. Jawad, L. A., & Al-Jufaili, S. M. (2007). Scale morphology of greater lizardfish Saurida tumbil (Bloch, 1795) (Pisces: Synodontidae). Journal of Fish Biology, 70, 1185–1212.CrossRefGoogle Scholar
  31. Jimenez, J. (2004). Turbulent flows over rough walls. Annual Review of Fluid Mechanics, 36, 173–196.CrossRefGoogle Scholar
  32. Johal, M. S., Esmaeili, H. R., & Sharma, M. L. (2006). Scale structure of a cobitid fish, Cobitis linea (Heckel, 1849) using different modes of SEM. Current Science, 91, 1464–1466.Google Scholar
  33. Johnson, M.K. and Adelson, E.H. (2009). Retrographic sensing for the measurement of surface texture and shape. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, 1070–1077.Google Scholar
  34. Johnson, M. K., Cole, F., Raj, A., & Adelson, E. H. (2011). Microgeometry capture using an elastomeric sensor. ACM Transactions on Graphics, 30, 46.CrossRefGoogle Scholar
  35. Lauder, G. V., Wainwright, D. K., Domel, A. G., Weaver, J., Wen, L., & Bertoldi, K. (2016). Structure, biomimetics, and fluid dynamics of fish skin surfaces. Physical Review Fluids, 1, 060502.CrossRefGoogle Scholar
  36. Li, R., & Adelson, E. H. (2013). Sensing and recognizing surface textures using a GelSight sensor. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1241–1247.Google Scholar
  37. Liyan, W. U., Zhibin, J., Yuqiu, S., Wentao, R., Shichao, N., & Zhiwu, H. (2017). Water-trapping and drag-reduction effects of fish Ctenopharyngodon idellus scales and their simulations. Science China Technological Sciences, 60, 1111–1117.CrossRefGoogle Scholar
  38. Long, J. H., Hale, M. E., McHenry, M. J., & Westneat, M. W. (1996). Functions of fish skin: Flexural stiffness and steady swimming of longnose gar Lepisosteus osseus. The Journal of Experimental Biology, 199, 2139–2151.PubMedGoogle Scholar
  39. Margraf, F. J., & Riley, L. M. (1993). Evaluation of scale shape for identifying spawning stocks of coastal Atlantic striped bass (Morone saxatilis). Fisheries Research, 18, 163–172.CrossRefGoogle Scholar
  40. Meunier, F. J. (1981). “Twisted plywood” structure and mineralization in the scales of a primitive living fish Amia calva. Tissue & Cell, 13, 165–171.CrossRefGoogle Scholar
  41. Meunier, F. J. (2011). The Osteichtyes, from the Paleozoic to the extant time, through histology and palaeohistology of bony tissues. Comptes Rendus Palevol, 10, 347–355.CrossRefGoogle Scholar
  42. Meunier, F. J., & Brito, P. M. (2004). Histology and morphology of the scales in some extinct and extant teleosts. Cybium, 28, 225–235.Google Scholar
  43. Meyer, W., & Seegers, U. (2012). Basics of skin structure and function in elasmobranchs: A review. Journal of Fish Biology, 80, 1940–1967.CrossRefPubMedGoogle Scholar
  44. Motta, P., Habegger, M. L., Lang, A., Hueter, R., & Davis, J. (2012). Scale morphology and flexibility in the shortfin mako Isurus oxyrinchus and the blacktip shark Carcharhinus limbatus. Journal of Morphology, 273, 1096–1110.CrossRefPubMedGoogle Scholar
  45. Rakers, S., Gebert, M., Uppalapati, S., Meyer, W., Maderson, P., Sell, A. F., Kruse, C., & Paus, R. (2010). “Fish matters”: The relevance of fish skin biology to investigative dermatology. Experimental Dermatology, 19, 313–324.CrossRefPubMedGoogle Scholar
  46. Roberts, C. D. (1993). Comparative morphology of spined scales and their phylogenetic significance in the Teleostei. Bulletin of Marine Science, 52, 60–113.Google Scholar
  47. Rosen, M. W., & Cornford, N. E. (1971). Fluid friction of fish slimes. Nature, 234, 49–51.CrossRefGoogle Scholar
  48. Sagong, W., Kim, C., Choi, S., Jeon, W.-P. and Choi, H. (2008). Does the sailfish skin reduce the skin friction like the shark skin? Physics of Fluids, 20, 101510-1-101510-10.Google Scholar
  49. Sankar, S., Sekar, S., Mohan, R., Rani, S., Sundaraseelan, J., & Sastry, T. P. (2008). Preparation and partial characterization of collagen sheet from fish (Lates calcarifer) scales. International Journal of BIological Macromolecules, 42, 6–9.CrossRefPubMedGoogle Scholar
  50. Schönbörner, A. A., Boivin, G., & Baud, C. A. (1979). The mineralization processes in teleost fish scales. Cell and Tissue Research, 202, 203–212.CrossRefPubMedGoogle Scholar
  51. Schultz, M. P., & Flack, K. A. (2007). The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. Journal of Fluid Mechanics, 580, 381.CrossRefGoogle Scholar
  52. Shephard, K. L. (1994). Functions for fish mucus. Reviews in Fish Biology and Fisheries, 4, 401–429.CrossRefGoogle Scholar
  53. Sire, J.-Y. (1986). Ontogenic development scales in a cichlid Hemichromis bimaculatus (Cichlidae). Journal of Fish Biology, 28, 713–724.CrossRefGoogle Scholar
  54. Sire, J.-Y., & Akimenko, M.-A. (2004). Scale development in fish: A review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). The International Journal of Developmental Biology, 48, 233–247.CrossRefPubMedGoogle Scholar
  55. Sire, J.-Y., & Arnulf, I. (1990). The development of squamation in four Teleostean fishes with a survey of the literature. Jpn. Journal of Ichthyology, 37, 133–143.Google Scholar
  56. Sire, J., & Arnulf, I. (2000). Structure and development of the ctenial spines on the scales of a teleost fish, the cichlid Cichlasoma nigrofasciatum. Acta Zoologica, 81, 139–158.CrossRefGoogle Scholar
  57. Sire, J.-Y., & Huysseune, A. (2003). Formation of dermal skeletal and dental tissues in fish: A comparative and evolutionary approach. Biological Reviews of the Cambridge Philosophical Society, 78, 219–249.CrossRefPubMedGoogle Scholar
  58. Smits, A. J. (2000). A physical introduction to fluid mechanics. New York: John Wiley and Sons.Google Scholar
  59. Song, J., Ortiz, C., & Boyce, M. C. (2011). Threat-protection mechanics of an armored fish. Journal of the Mechanical Behavior of Biomedical Materials, 4, 699–712.CrossRefPubMedGoogle Scholar
  60. Sudo, S., Tsuyuki, K., Ito, Y., & Ikohagi, T. (2002). A study on the surface shape of fish scales. Trans. Jpn. Soc. Mechanical Engineering, 45, 1100–1105.Google Scholar
  61. Suzuki, T. (1971). Some scale patterns of the scad, Decapterus maruadsi (Temminck et Schlegel), and their variations with body parts. Bulletin of the Japan Sea Regional Fisheries Research Laboratory 23, 1–19.Google Scholar
  62. Szewciw, L., Zhu, D., & Barthelat, F. (2017). The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin. Journal of the Mechanical Behavior of Biomedical Materials, 17, 30252–30257.Google Scholar
  63. Taylor, H. F. (1916). The structure and growth of the scales of the squeteague and the pigfish as indicative of life history. Fishery Bulletin, 34, 285–330.Google Scholar
  64. Thomson, J. M. (1956). Interpretation of the scales of the yellow-eye mullet, Aldrichetta forsteri (Cuvier & Valenciennes) (Mugilidae). Australian Journal of Marine and Freshwater Research, 8, 14–30.Google Scholar
  65. Vernerey, F. J., & Barthelat, F. (2010). On the mechanics of fishscale structures. International Journal of Solids and Structures, 47, 2268–2275.CrossRefGoogle Scholar
  66. Vernerey, F. J., & Barthelat, F. (2014). Skin and scales of teleost fish: Simple structure but high performance and multiple functions. Journal of the Mechanics and Physics of Solids, 68, 66–76.CrossRefGoogle Scholar
  67. Wainwright, D. K., & Lauder, G. V. (2016). Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis macrochirus. Zoology, 119, 182–195.CrossRefPubMedGoogle Scholar
  68. Wainwright, D. K., Lauder, G. V., & Weaver, J. C. (2017). Imaging biological surface topography in situ and in vivo. Methods in Ecology and Evolution. in press.Google Scholar
  69. Walters, V. (1963). The Trachipterid integument and an hypothesis on its hydrodynamic function. Copeia, 1963, 260–270.CrossRefGoogle Scholar
  70. Wen, L., Weaver, J. C., & Lauder, G. V. (2014). Biomimetic shark skin: Design, fabrication and hydrodynamic function. The Journal of Experimental Biology, 217, 1656–1666.CrossRefPubMedGoogle Scholar
  71. Wen, L., Weaver, J. C., Thornycroft, P. J. M., & Lauder, G. V. (2015). Hydrodynamic function of biomimetic shark skin: Effect of denticle pattern and spacing. Bioinspiration & Biomimetics, 10, 066010.CrossRefGoogle Scholar
  72. Whitear, M. (1970). The skin surface of bony fishes. Journal of Zoology, 4, 437–454.Google Scholar
  73. Whitehouse, D. J. (1994). Handbook of surface metrology. Philadelphia: Institute of Physics Publishing.Google Scholar
  74. Xu, Z., Parra, D., Gomez, D., Salinas, I., Zhang, Y.-A., von Gersdorff Jørgensen, L., Heinecke, R. D., Buchmann, K., LaPatra, S., & Sunyer, J. O. (2013). Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proceedings of the National Academy of Sciences of the United States of America, 110, 13097–13102.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yanase, K., & Saarenrinne, P. (2015). Unsteady turbulent boundary layers in swimming rainbow trout. The Journal of Experimental Biology, 218, 1373–1385.CrossRefPubMedGoogle Scholar
  76. Zaccone, G., Kapoor, B. G., Fasulo, S., & Ainis, L. (2001). Structural, histochemical and functional aspects of the epidermis of fishes. Advnces in Marine Biology, 40, 253–348.CrossRefGoogle Scholar
  77. Zylberberg, L., Bereiter-Hahn, J., & Sire, J. Y. (1988). Cytoskeletal organization and collagen orientation in the fish scales. Cell and Tissue Research, 253, 597–607.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA

Personalised recommendations