Advertisement

Ascorbate as a Key Player in Plant Abiotic Stress Response and Tolerance

Chapter

Abstract

During their lifespan, plants are frequently exposed to adverse environmental conditions such as high solar irradiance, drought, heat, chilling, salinity, metal excess, and nutrient deficiency. The effects of these factors on plants are often interrelated and usually result in a decreased capacity of carbon fixation in photosynthesis, disturbed redox homeostasis, and growth arrest. Under severe conditions, increased excitation pressure in the chloroplasts exceeds the antioxidative capacity of plant cells leading to oxidative damage of cellular constituents. Although the plant ascorbate (Asc) level varies depending on external factors, developmental stage, diurnal rhythm, and light, its redox status is related to redox homeostasis in the cell. In chloroplasts, peroxisomes, and cytosol, Asc has a key role in hydrogen peroxide (H2O2) scavenging via Asc peroxidase and is efficiently recycled via the ascorbate-glutathione (Asc–GSH) cycle and directly by monodehydroascorbate reductase activity. In apoplast and vacuoles, Asc is the main reductant of phenolic radicals generated under oxidative stress. Besides its antioxidative role, Asc has an important role in a complex and well-orchestrated plant response network to environmental stress, performing multiple tasks in redox signalling, regulation of enzymatic activities, modulation of gene expression, biosynthesis of phytohormones, and growth regulation. The content of Asc and its redox state is tightly related to cellular compartments. Therefore, it is important to emphasize Asc cellular distribution, which has a great impact on reactive oxygen species regulation and signalling. Numerous studies on transgenic plants with altered endogenous Asc levels and redox status were done with the aim to influence plant growth and improve tolerance to various abiotic stressors. In this chapter, we discuss the current understanding of the involvement of Asc metabolism in abiotic stress response. Moreover, the improved resilience to stressors in transgenic plants with altered enzymes involved in Asc biosynthesis and recycling will be discussed.

Keywords

Abiotic stress Anthocyanins Ascorbate Cross-tolerance Signalling Subcellular localization of ascorbate 

Notes

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (Project No. III43010).

References

  1. Acevedo E, Hsiao TC, Henderson DW (1971) Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol 48:631–636PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agati G, Stefano G, Biricolti S, Tattini M (2009) Mesophyll distribution of ‘antioxidant’ flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance. Ann Bot 104:853–861PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akhtar TA, Lees HA, Lampi MA, Enstone D, Brain RA, Greenberg BM (2010) Photosynthetic redox imbalance influences flavonoid biosynthesis in Lemna gibba. Plant Cell Environ 33:1205–1219PubMedGoogle Scholar
  4. Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1, 4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251:1265–1283PubMedCrossRefGoogle Scholar
  7. Aphalo PJ, Albert A, Björn LO, McLeod A, Robson TM, Rosenqvist E (2012) In: Aphalo PJ, Albert A, Björn LO, McLeod A, Robson TM, Rosenqvist E (eds) Beyond the visible: a handbook of best practice in plant UV photobiology. University of Helsinki (Helsingin yliopisto), FinlandGoogle Scholar
  8. Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9PubMedCrossRefGoogle Scholar
  9. Arrigoni O, Bitonti MB, Cozza R, Innocenti AM, Liso R, Veltri R (1989) Ascorbic acid effect on pericycle cell line in Allium cepa root. Caryologia 42:213–216CrossRefGoogle Scholar
  10. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639PubMedCrossRefGoogle Scholar
  11. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396PubMedPubMedCentralCrossRefGoogle Scholar
  12. Asai N, Matsuyama T, Tamaoki M, Nakajima N, Kubo A, Aono M, Kato T, Tabata S, Shirano Y, Shibata D, Hayashi H (2004) Compensation for lack of a cytosolic ascorbate peroxidase in an Arabidopsis mutant by activation of multiple antioxidative systems. Plant Sci 166:1547–1554CrossRefGoogle Scholar
  13. Aver’yanov AA (1985) Superoxide radical generation by intact pea roots. Fiziologiya Rastenii 32:268–273Google Scholar
  14. Awad J, Stotz HU, Fekete A, Krischke M, Engert C, Havaux M, Berger S, Mueller MJ (2015) 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions. Plant Physiol 167:1592–1603PubMedPubMedCentralCrossRefGoogle Scholar
  15. Azevedo Neto AD, Prisco JT, Enéas-Filho J, de Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94CrossRefGoogle Scholar
  16. Badejo AA, Esaka M (2010) Identification of potential gene targets for the improvement of ascorbate contents of genetically modified plants. In: Anjum NA, Umar S, Chan MT (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Netherlands, pp 405–428CrossRefGoogle Scholar
  17. Badger MR, Kaplan A, Berry JA (1980) Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for a carbon dioxide-concentrating mechanism. Plant Physiol 66:407–413PubMedPubMedCentralCrossRefGoogle Scholar
  18. Baier M, Noctor G, Foyer CH, Dietz K-J (2000) Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. Plant Physiol 124:823–832PubMedPubMedCentralCrossRefGoogle Scholar
  19. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113PubMedCrossRefGoogle Scholar
  20. Ballaré CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF (2011) Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10:226–241PubMedCrossRefGoogle Scholar
  21. Bánhegyi G, Benedetti A, Margittai É, Marcolongo P, Fulceri R, Németh CE, Szarka A (2014) Subcellular compartmentation of ascorbate and its variation in disease states. Biochim Biophys Acta 1843:1909–1916PubMedCrossRefGoogle Scholar
  22. Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134:1784–1792PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–344PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bartoli CG, Guiamet JJ, Kiddle G, Pastori GM, Di Cagno R, Theodoulou FL, Foyer CH (2005) Ascorbate content of wheat leaves is not determined by maximal L-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant Cell Environ 28:1073–1081CrossRefGoogle Scholar
  25. Bartoli CG, Yu J, Gómez F, Fernández L, McIntosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631PubMedCrossRefGoogle Scholar
  26. Bartoli CG, Tambussi EA, Diego F, Foyer CH (2009) Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Lett 583:118–122PubMedCrossRefGoogle Scholar
  27. Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH (2013) Interactions between hormone and redox signalling pathways in the control of growth and cross-tolerance to stress. Environ Exp Bot 94:73–88CrossRefGoogle Scholar
  28. Behn H, Albert A, Marx F, Noga G, Ulbrich A (2010) Ultraviolet-B and photosynthetically active radiation interactively affect yield and pattern of monoterpenes in leaves of peppermint (Mentha × piperita L.) J Agric Food Chem 58:7361–7367PubMedCrossRefGoogle Scholar
  29. Bielen A, Remans T, Vangronsveld J, Cuypers A (2013) The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. Int J Mol Sci 14:6382–6413PubMedPubMedCentralCrossRefGoogle Scholar
  30. Bielski BH, Allen AO, Schwarz HA (1981) Mechanism of the disproportionation of ascorbate radicals. J Am Chem Soc 103:3516–3518CrossRefGoogle Scholar
  31. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840:1596–1604PubMedCrossRefGoogle Scholar
  32. Bolink EM, Van Schalkwijk I, Posthumus F, Van Hasselt PR (2001) Growth under UV-B radiation increases tolerance to high-light stress in pea and bean plants. Plant Ecol 154:147–156CrossRefGoogle Scholar
  33. Bolt S, Zuther E, Zintl S, Hincha DK, Schmülling T (2017) ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant Cell Environ 40:108–120PubMedCrossRefGoogle Scholar
  34. Brosche M, Kangasjarvi J (2012) Low antioxidant concentrations impact on multiple signaling pathways in Arabidopsis thaliana partly through NPR1. J Exp Bot 63:1849–1861PubMedPubMedCentralCrossRefGoogle Scholar
  35. Brossa R, López-Carbonell M, Jubany-Marí T, Alegre L (2011) Interplay between abscisic acid and jasmonic acid and its role in water-oxidative stress in wild type, ABA-deficient, JA-deficient, and ascorbate-deficient Arabidopsis plants. J Plant Growth Regul 30:322–333CrossRefGoogle Scholar
  36. Brossa R, Pintó-Marijuan M, Jiang K, Alegre L, Feldman LJ (2013) Assessing the regulation of leaf redox status under water stress conditions in Arabidopsis thaliana: Col-0 ecotype (wild type and vtc-2), expressing mitochondrial and cytosolic roGFP1. Plant Signal Behav 8:e24781PubMedPubMedCentralCrossRefGoogle Scholar
  37. Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 102:18225–18230PubMedPubMedCentralCrossRefGoogle Scholar
  38. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543PubMedCrossRefGoogle Scholar
  39. Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541PubMedCrossRefGoogle Scholar
  40. Bulley SM, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W (2009) Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778PubMedPubMedCentralCrossRefGoogle Scholar
  41. Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816PubMedCrossRefGoogle Scholar
  42. Cabelli DE, Bielski BH (1983) Kinetics and mechanism for the oxidation of ascorbic acid/ascorbate by HO2 /O2 •- (hydroperoxyl/superoxide) radicals. A pulse radiolysis and stopped-flow photolysis study. J Phys Chem 87:1809–1812CrossRefGoogle Scholar
  43. Camarena V, Wang G (2016) The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci 73:1645–1658PubMedPubMedCentralCrossRefGoogle Scholar
  44. Castillo FJ, Greppin H (1988) Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ Exp Bot 28:231–238CrossRefGoogle Scholar
  45. Chao YY, Hong CY, Kao CH (2010) The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiol Biochem 48:374–381PubMedCrossRefGoogle Scholar
  46. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264CrossRefGoogle Scholar
  47. Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57:2435–2444PubMedCrossRefGoogle Scholar
  48. Cheeseman JM (2007) Hydrogen peroxide and plant stress: a challenging relationship. Plant Stress 1:4–15Google Scholar
  49. Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162PubMedPubMedCentralCrossRefGoogle Scholar
  50. Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689PubMedPubMedCentralCrossRefGoogle Scholar
  51. Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787PubMedPubMedCentralCrossRefGoogle Scholar
  52. Chen Z, Gallie DR (2008) Dehydroascorbate reductase affects non-photochemical quenching and photosynthetic performance. J Biol Chem 283:21347–21361PubMedCrossRefGoogle Scholar
  53. Chen SX, Schopfer P (1999) Hydroxyl-radical production in physiological reactions. FEBS J 260:726–735Google Scholar
  54. Chen C, Letnik I, Hacham Y, Dobrev P, Ben-Daniel BH, Vanková R, Amir R, Miller G (2014) Ascorbate peroxidase6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross-talk between reactive oxygen species, abscisic acid, and auxin. Plant Physiol 166:370–383PubMedPubMedCentralCrossRefGoogle Scholar
  55. Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ethylene response factor1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582PubMedPubMedCentralCrossRefGoogle Scholar
  56. Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798PubMedCrossRefGoogle Scholar
  57. Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970CrossRefGoogle Scholar
  58. Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci U S A 93:9970–9974PubMedPubMedCentralCrossRefGoogle Scholar
  59. Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci U S A 96:4198–4203PubMedPubMedCentralCrossRefGoogle Scholar
  60. Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154:847–856PubMedPubMedCentralGoogle Scholar
  61. Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N (2006) Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 281:15662–15670PubMedCrossRefGoogle Scholar
  62. Conklin PL, DePaolo D, Wintle B, Schatz C, Buckenmeyer G (2013) Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase: protein phosphatase involved in the regulation of the ascorbic acid pool in plants. J Exp Bot 64:2793–2804PubMedCrossRefGoogle Scholar
  63. Córdoba F, González-Reyes JA (1994) Ascorbate and plant cell growth. J Bioenerg Biomembr 26:399–405PubMedCrossRefGoogle Scholar
  64. Córdoba-Pedregosa M, Córdoba F, Villalba JM, González-Reyes JA (2003) Differential distribution of ascorbic acid, peroxidase activity, and hydrogen peroxide along the root axis in Allium cepa L. and its possible relationship with cell growth and differentiation. Protoplasma 221:57–65CrossRefGoogle Scholar
  65. Cramer GR, Bowman DC (1991) Kinetics of maize leaf elongation: I. Increased yield threshold limits short-term, steady-state elongation rates after exposure to salinity. J Exp Bot 42:1417–1426CrossRefGoogle Scholar
  66. D’Haese D, Vandermeiren K, Asard HAN, Horemans N (2005) Other factors than apoplastic ascorbate contribute to the differential ozone tolerance of two clones of Trifolium repens L. Plant Cell Environ 28:623–632CrossRefGoogle Scholar
  67. De Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165CrossRefGoogle Scholar
  68. De Gara L, De Pinto MC, Arrigoni O (1997) Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Plant 100:894–900CrossRefGoogle Scholar
  69. De Pinto MC, De Gara L (2004) Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J Exp Bot 55:2559–2569PubMedCrossRefGoogle Scholar
  70. De Pinto MC, Francis D, De Gara L (1999) The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209:90–97PubMedCrossRefGoogle Scholar
  71. De Tullio M, Guether M, Balestrini R (2013) Ascorbate oxidase is the potential conductor of a symphony of signaling pathways. Plant Signal Behav 8:e23213PubMedPubMedCentralCrossRefGoogle Scholar
  72. Debolt S, Melino V, Ford CM (2007) Ascorbate as a biosynthetic precursor in plants. Ann Bot 99:3–8PubMedCrossRefGoogle Scholar
  73. Delaunois B, Colby T, Belloy N, Conreux A, Harzen A, Baillieul F, Clément C, Schmidt J, Jeandet P, Cordelier S (2013) Large-scale proteomic analysis of the grapevine leaf apoplastic fluid reveals mainly stress-related proteins and cell wall modifying enzymes. BMC Plant Biol 13:24PubMedPubMedCentralCrossRefGoogle Scholar
  74. Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228CrossRefGoogle Scholar
  75. Demmig-Adams B, Adams WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26CrossRefGoogle Scholar
  76. Deutsch JC (2000) Dehydroascorbic acid. J Chromatogr A 881:299–307PubMedCrossRefGoogle Scholar
  77. Diaz-Vivancos P, Barba-Espín G, Clemente-Moreno MJ, Hernández JA (2010) Characterization of the antioxidant system during the vegetative development of pea plants. Biol Plant 54:76–82CrossRefGoogle Scholar
  78. Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione-linking cell proliferation to oxidative stress. Free Radic Bio Med 89:1154–1164CrossRefGoogle Scholar
  79. Dietz K-J (2014) Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 21:1356–1372PubMedCrossRefGoogle Scholar
  80. Dietz K-J (2016) Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol Cells 39:20–25PubMedPubMedCentralCrossRefGoogle Scholar
  81. Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709PubMedCrossRefGoogle Scholar
  82. Doke N (1985) NADPH-dependent O2 •− generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol Plant Pathol 27:311–322CrossRefGoogle Scholar
  83. Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689PubMedCrossRefGoogle Scholar
  84. Drazkiewicz M, Skórzyńska-Polit E, Krupa Z (2003) Response of the ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana (L.) Plant Sci 164:195–202CrossRefGoogle Scholar
  85. Du J, Cullen JJ, Buettner GR (2012) Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta 1826:443–457PubMedPubMedCentralGoogle Scholar
  86. Du J, Wagner BA, Buettner GR, Cullen JJ (2015) Role of labile iron in the toxicity of pharmacological ascorbate. Free Radic Biol Med 84:289–295PubMedPubMedCentralCrossRefGoogle Scholar
  87. Duan M, Ma NN, Li D, Deng YS, Kong FY, Lv W, Meng QW (2012) Antisense-mediated suppression of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiol Biochem 58:37–45PubMedCrossRefGoogle Scholar
  88. Dumville JC, Fry SC (2003) Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217:951–961PubMedCrossRefGoogle Scholar
  89. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264PubMedCrossRefGoogle Scholar
  90. Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM (2017) Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 8:49PubMedPubMedCentralCrossRefGoogle Scholar
  91. Faize M, Nicolás E, Faize L, Díaz-Vivancos P, Burgos L, Hernández JA (2015) Cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase improve seed germination, plant growth, nutrient uptake and drought tolerance in tobacco. Theor Exp. Plant Physiol 27:215–226Google Scholar
  92. Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450PubMedCrossRefGoogle Scholar
  93. Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, Seidlitz HK, Nagy F, Ulm R (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601PubMedPubMedCentralCrossRefGoogle Scholar
  94. Fecht-Christoffers MM, Maier P, Horst WJ (2003) Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiol Plant 117:237–244CrossRefGoogle Scholar
  95. Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM (2015) The AlkB family of Fe (II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J Biol Chem 290:20734–20742PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ferreres F, Figueiredo R, Bettencourt S, Carqueijeiro I, Oliveira J, Gil-Izquierdo A, Pereira DM, Valentão P, Andrade PB, Duarte P, Barceló AR (2011) Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair? J Exp Bot 62:2841–2854PubMedCrossRefGoogle Scholar
  97. Fortes AM, Gallusci P (2017) Plant stress responses and phenotypic plasticity in the epigenomics era: perspectives on the grapevine scenario, a model for perennial crop plants. Front Plant Sci 8:82.  https://doi.org/10.3389/fpls.2017.00082 PubMedPubMedCentralGoogle Scholar
  98. Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008) Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot 59:729–737PubMedCrossRefGoogle Scholar
  99. Foyer CH, Halliwell B (1976) Presence of glutathione and glutathione reductase in chloroplast; a proposed role in ascorbic acid metabolism. Planta 133:21–25PubMedCrossRefGoogle Scholar
  100. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  101. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905PubMedCrossRefGoogle Scholar
  102. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18PubMedPubMedCentralCrossRefGoogle Scholar
  103. Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant Cell Environ 39:951–964PubMedCrossRefGoogle Scholar
  104. Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100PubMedCrossRefGoogle Scholar
  105. Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428PubMedPubMedCentralCrossRefGoogle Scholar
  106. Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332:507–515PubMedPubMedCentralCrossRefGoogle Scholar
  107. Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organization of Arabidopsis leaves. Plant J 33:691–705PubMedCrossRefGoogle Scholar
  108. Gallie DR (2013) L-ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica 2013:795964PubMedPubMedCentralCrossRefGoogle Scholar
  109. Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N, Mullineaux PM (2009) The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell 21:2143–2162PubMedPubMedCentralCrossRefGoogle Scholar
  110. Gao Q, Zhang L (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165:138–148PubMedCrossRefGoogle Scholar
  111. Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. Plant J 30:541–553PubMedCrossRefGoogle Scholar
  112. Gechev T, Willekens H, Van Montagu M, Inzé D, Van Camp W, Toneva V, Minkov I (2003) Different responses of tobacco antioxidant enzymes to light and chilling stress. J Plant Physiol 160:509–515PubMedCrossRefGoogle Scholar
  113. Gergoff G, Chaves A, Bartoli CG (2010) Ethylene regulates ascorbic acid content during dark-induced leaf senescence. Plant Sci 178:207–212CrossRefGoogle Scholar
  114. Gest N, Gautier H, Stevens R (2012) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53PubMedCrossRefGoogle Scholar
  115. Giacomelli L, Rudella A, van Wijk KJ (2006) High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiol 141:685–701PubMedPubMedCentralCrossRefGoogle Scholar
  116. Giacomelli L, Masi A, Ripoll DR, Lee MJ, van Wijk KJ (2007) Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol Biol 65:627–644PubMedCrossRefGoogle Scholar
  117. Gillham DJ, Dodge AD (1986) Hydrogen-peroxide-scavenging systems within pea chloroplasts. Planta 167:246–251PubMedCrossRefGoogle Scholar
  118. Giménez MJ, Serrano M, Valverde JM, Martínez-Romero D, Castillo S, Valero D, Guillén F (2017) Preharvest salicylic acid and acetylsalicylic acid treatments preserve quality and enhance antioxidant systems during postharvest storage of sweet cherry cultivars. J Sci Food Agr 97:1220–1228CrossRefGoogle Scholar
  119. Gloser V, Korovetska H, Martín-Vertedor AI, Hájíčková M, Prokop Z, Wilkinson S, Davies W (2016) The dynamics of xylem sap pH under drought: a universal response in herbs? Plant and Soil 409:259–272CrossRefGoogle Scholar
  120. Golan T, Muller-Moule P, Niyogi KK (2006) Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants. Plant Cell Environ 29:879–887PubMedCrossRefGoogle Scholar
  121. Gonzalez E, Brereton NJ, Marleau J, Nissim WG, Labrecque M, Pitre FE, Joly S (2015) Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil. BMC Plant Biol 15:246PubMedPubMedCentralCrossRefGoogle Scholar
  122. Götz M, Albert A, Stich S, Heller W, Scherb H, Krins A, Ernst D (2010) PAR modulation of the UV-dependent levels of flavonoid metabolites in Arabidopsis thaliana (L.) Heynh.leaf rosettes: cumulative effects after a whole vegetative growth period. Protoplasma 243:95–103PubMedCrossRefGoogle Scholar
  123. Green MA, Fry SC (2005) Apoplastic degradation of ascorbate: novel enzymes and metabolites permeating the plant cell wall. Plant Biosyst 139:2–7CrossRefGoogle Scholar
  124. Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851PubMedCrossRefGoogle Scholar
  125. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford Science, OxfordGoogle Scholar
  126. Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25CrossRefGoogle Scholar
  127. Heber U, Miyake C, Mano J, Ohno C, Asada K (1996) Monodehydroascorbate radical detected by electron paramagnetic resonance spectrometry is a sensitive probe of oxidative stress in intact leaves. Plant Cell Physiol 37:1066–1072CrossRefGoogle Scholar
  128. Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237PubMedCrossRefGoogle Scholar
  129. Heldt HW, Chon CJ, Lorimer GH (1978) Phosphate requirement for the light activation of ribulose-1,5-biphosphate carboxylase in intact spinach chloroplasts. FEBS Lett 92:234–240CrossRefGoogle Scholar
  130. Hemavathi, Upadhyaya CP, Akula N, Young KE, Chun SC, Kim DH, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32:321–330PubMedCrossRefGoogle Scholar
  131. Hernández I, Van Breusegem F (2010) Opinion on the possible role of flavonoids as energy escape valves: novel tools for nature’s Swiss army knife? Plant Sci 179:297–301CrossRefGoogle Scholar
  132. Heyneke E, Luschin-Ebengreuth N, Krajcer I, Wolkinger V, Müller M, Zechmann B (2013) Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biol 13:104–123PubMedPubMedCentralCrossRefGoogle Scholar
  133. Hideg É, Vass I (1996) UV-B induced free radical production in plant leaves and isolated thylakoid membranes. Plant Sci 115:251–260CrossRefGoogle Scholar
  134. Hideg É, Spetea C, Vass I (1994) Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy. Photosynth Res 39:191–199PubMedCrossRefGoogle Scholar
  135. Hideg É, Mano J, Ohno C, Asada K (1997) Increased levels of monodehydroascorbate radical in UV-B-irradiated broad bean leaves. Plant Cell Physiol 38:684–690CrossRefGoogle Scholar
  136. Hideg É, Rosenqvist E, Váradi G, Bornman J, Vincze É (2006) A comparison of UV-B induced stress responses in three barley cultivars. Func. Plant Biol 33:77–90Google Scholar
  137. Hideg É, Jansen MAK, Strid Å (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18:107–115PubMedCrossRefGoogle Scholar
  138. Hocking B, Tyerman SD, Burton RA, Gilliham M (2016) Fruit calcium: transport and physiology. Front Plant Sci 7:569PubMedPubMedCentralCrossRefGoogle Scholar
  139. Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267PubMedCrossRefGoogle Scholar
  140. Horemans N, Raeymaekers T, Van Beek K, Nowocin A, Blust R, Broos K, Cuypers A, Vangronsveld J, Guisez Y (2007) Dehydroascorbate uptake is impaired in the early response of Arabidopsis plant cell cultures to cadmium. J Exp Bot 58:4307–4317PubMedCrossRefGoogle Scholar
  141. Horling F, Lamkemeyer P, König J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ (2003) Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131:317–325PubMedPubMedCentralCrossRefGoogle Scholar
  142. Horváth E, Brunner S, Bela K, Papdi C, Szabados L, Tari I, Csiszár J (2015) Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of A. thaliana. Funct Plant Biol 42:1129–1140Google Scholar
  143. Hossain MA, Asada K (1985) Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme. J Biol Chem 260:12920–12926PubMedGoogle Scholar
  144. Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875Google Scholar
  145. Hossain MA, Li ZG, Hoque TS, Burritt DJ, Fujita M, Munné-Bosch S (2018) Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma 255:399–412PubMedCrossRefGoogle Scholar
  146. Hu Z, Li H, Chen S, Yang Y (2013) Chlorophyll content and photosystem II efficiency in soybean exposed to supplemental ultraviolet-B radiation. Photosynthetica 51:151–157CrossRefGoogle Scholar
  147. Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049PubMedCrossRefGoogle Scholar
  148. Huang PY, Catinot J, Zimmerli L (2015) Ethylene response factors in Arabidopsis immunity. J Exp Bot 67:1231–1241PubMedCrossRefGoogle Scholar
  149. Huot B, Yao J, Montgomery BL, He SY (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7:1267–1287PubMedPubMedCentralCrossRefGoogle Scholar
  150. Iglesias MJ, Terrile MC, Bartoli CG, D’Ippólito S, Casalongué CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222PubMedCrossRefGoogle Scholar
  151. Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotech Bioch 72:1143–1154CrossRefGoogle Scholar
  152. Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78CrossRefGoogle Scholar
  153. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450PubMedPubMedCentralCrossRefGoogle Scholar
  154. Janiak A, Kwaśniewski M, Szarejko I (2015) Gene expression regulation in roots under drought. J Exp Bot 67:1003–1014PubMedCrossRefGoogle Scholar
  155. Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135CrossRefGoogle Scholar
  156. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431PubMedCrossRefGoogle Scholar
  157. Jiménez A, Hernández JA, Del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284PubMedPubMedCentralCrossRefGoogle Scholar
  158. Jozefczak M, Bohler S, Schat H, Horemans N, Guisez Y, Remans T, Vangronsveld J, Cuypers A (2015) Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium. Ann Bot 116:601–612PubMedPubMedCentralCrossRefGoogle Scholar
  159. Jubany-Mari T, Prinsen E, Munné-Bosch S, Alegre L (2010) The timing of methyl jasmonate, hydrogen peroxide and ascorbate accumulation during water deficit and subsequent recovery in the Mediterranean shrub Cistus albidus L. Environ Exp Bot 69:47–55CrossRefGoogle Scholar
  160. Kaiser WM (1979) Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 145:377–382PubMedCrossRefGoogle Scholar
  161. Kalbin G, Ohlsson AB, Berglund T, Rydström J, Strid Å (1997) Ultraviolet-B-radiation-induced changes in nicotinamide and glutathione metabolism and gene expression in plants. Eur J Biochem 249:465–472PubMedCrossRefGoogle Scholar
  162. Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY, Zhu YJ, Guo TC (2013) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol Plant 57:718–724CrossRefGoogle Scholar
  163. Kangasjärvi S, Kangasjärvi J (2014) Towards understanding extracellular ROS sensory and signaling systems in plants. Adv Bot 2014:538946Google Scholar
  164. Kangasjärvi S, Lepistö A, Hännikäinen K, Piippo M, Luomala EM, Aro EM, Rintamäki E (2008) Diverse roles for chloroplast stromal and thylakoid bound ascorbate peroxidases in plant stress responses. Biochem J 412:275–285PubMedCrossRefGoogle Scholar
  165. Kärkönen A, Fry SC (2006) Effect of ascorbate and its oxidation products on H2O2 production in cell-suspension cultures of Picea abies and in the absence of cells. J Exp Bot 57:1633–1644PubMedCrossRefGoogle Scholar
  166. Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640PubMedPubMedCentralCrossRefGoogle Scholar
  167. Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657PubMedCrossRefGoogle Scholar
  168. Kato N, Esaka M (1996) cDNA cloning and gene expression of ascorbate oxidase in tobacco. Plant Mol Biol 30:833–837PubMedCrossRefGoogle Scholar
  169. Kausar R, Hossain Z, Makino T, Komatsu S (2012) Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Mol Biol Rep 39:10573–10579PubMedCrossRefGoogle Scholar
  170. Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321–1329PubMedCrossRefGoogle Scholar
  171. Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343PubMedCrossRefGoogle Scholar
  172. Kerchev PI, Pellny TK, Vivancos PD, Kiddle G, Hedden P, Driscoll S, Vanacker H, Verrier P, Hancock RD, Foyer CH (2011) The transcription factor ABI4 is required for the ascorbic acid–dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. Plant Cell 23:3319–3334PubMedPubMedCentralCrossRefGoogle Scholar
  173. Kerr JB, Fioletov VE (2008) Surface ultraviolet radiation. Atmos Ocean 46:159–184CrossRefGoogle Scholar
  174. Kiddle G, Pastori GM, Bernard S, Pignocchi C, Antoniw J, Verrier PJ, Foyer CH (2003) Effects of leaf ascorbate content on defense and photosynthesis gene expression in Arabidopsis thaliana. Antioxid Redox Signal 5:23–32PubMedCrossRefGoogle Scholar
  175. Klem K, Ač A, Holub P, Kovác D, Špunda V, Robson TM, Urban O (2012) Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environ Exp Bot 75:52–64CrossRefGoogle Scholar
  176. Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267PubMedCrossRefGoogle Scholar
  177. Koffler BE, Polanschütz L, Zechmann B (2014a) Higher sensitivity of pad2-1 and vtc2-1 mutants to cadmium is related to lower subcellular glutathione rather than ascorbate contents. Protoplasma 251:755–769PubMedCrossRefGoogle Scholar
  178. Koffler BE, Luschin-Ebengreuth N, Stabentheiner E, Müller M, Zechmann B (2014b) Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Sci 227:133–144PubMedPubMedCentralCrossRefGoogle Scholar
  179. Kramarenko GG, Hummel SG, Martin SM, Buettner GR (2006) Ascorbate reacts with singlet oxygen to produce hydrogen peroxide. Photochem Photobiol 82:1634–1637PubMedPubMedCentralCrossRefGoogle Scholar
  180. Kubo A, Aono M, Nakajima N, Saji H, Tanaka K, Kondo N (1999) Differential responses in activity of antioxidant enzymes to different environmental stresses in Arabidopsis thaliana. J Plant Res 112:279–290CrossRefGoogle Scholar
  181. Kuchitsu K, Kosaka H, Shiga T, Shibuya N (1995) EPR evidence for generation of hydroxyl radical triggered by N-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspension-cultured rice cells. Protoplasma 188:138–142CrossRefGoogle Scholar
  182. Kuiper C, Vissers MC (2014) Ascorbate as a cofactor for Fe-and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression. Front Oncol 4:359PubMedPubMedCentralGoogle Scholar
  183. Kukavica B, Veljović-Jovanović S (2004) Senescence-related changes in the antioxidant status of ginkgo and birch leaves during autumn yellowing. Physiol Plant 122:321–327CrossRefGoogle Scholar
  184. Kukavica B, Mojović M, Vučinić Ž, Maksimović V, Takahama U, Veljović-Jovanović S (2008) Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production. Plant Cell Physiol 50:304–317PubMedCrossRefGoogle Scholar
  185. Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285PubMedCrossRefGoogle Scholar
  186. Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci U S A 104:9534–9539PubMedPubMedCentralCrossRefGoogle Scholar
  187. Laing W, Norling C, Brewster D, Wright M, Bulley S (2017) Ascorbate concentration in Arabidopsis thaliana and expression of ascorbate related genes using RNAseq in response to light and the diurnal cycle. BioRxiv 138008.Google Scholar
  188. Lallement PA, Roret T, Tsan P, Gualberto JM, Girardet JM, Didierjean C, Rouhier N, Hecker A (2016) Insights into ascorbate regeneration in plants: investigating the redox and structural properties of dehydroascorbate reductases from Populus trichocarpa. Biochem J 473:717–731PubMedCrossRefGoogle Scholar
  189. Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26:591–598PubMedCrossRefGoogle Scholar
  190. Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, Luis A (2005) Peroxisomal MDHAR. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138:2111–2123PubMedPubMedCentralCrossRefGoogle Scholar
  191. Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139:421–434PubMedGoogle Scholar
  192. Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92:163–179PubMedCrossRefGoogle Scholar
  193. Lidon FJ, Reboredo FH, Leitã AE, Silva MMA, Duarte MP, Ramalho JC (2012) Impact of UV-B radiation on photosynthesis-an overview. Emirates J Food Agric 24:546–556CrossRefGoogle Scholar
  194. Liebthal M, Maynard D, Dietz K-J (2017) Peroxiredoxins and redox signaling in plants. Antioxid Redox Signal.  https://doi.org/10.1089/ars.2017.7164
  195. Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST (2012) MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytol 196:427–440PubMedCrossRefGoogle Scholar
  196. Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Clarke SG (2007) Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J Biol Chem 282:18879–18885PubMedPubMedCentralCrossRefGoogle Scholar
  197. Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B, Chevone BI, Mendes P, Nessler CL, Lorence A (2013) Elevating vitamin C content via overexpression of myo-inositol oxygenase and L-gulono-1, 4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In: In Vitro Cell Dev Biol-Plant, vol 49, pp 643–655Google Scholar
  198. Liso R, De Tullio MC, Ciraci S, Balestrini R, La Rocca N, Bruno L, Chiappetta A, Bitonti MB, Bonfante P, Arrigoni O (2004) Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L. J Exp Bot 55:2589–2597PubMedCrossRefGoogle Scholar
  199. Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Hermann Muehling K (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant 111:457–465PubMedCrossRefGoogle Scholar
  200. López-Carbonell M, Munné-Bosch S, Alegre L (2006) The ascorbate-deficient vtc-1 Arabidopsis mutant shows altered ABA accumulation in leaves and chloroplasts. J Plant Growth Regul 25:137–144CrossRefGoogle Scholar
  201. Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell Online 15:165–178CrossRefGoogle Scholar
  202. Lucini L, Bernardo L (2015) Comparison of proteome response to saline and zinc stress in lettuce. Front Plant Sci 6:240PubMedPubMedCentralCrossRefGoogle Scholar
  203. Luwe M (1996) Antioxidants in the apoplast and symplast of beech (Fagus sylvatica L.) leaves: seasonal variations and responses to changing ozone concentrations in air. Plant Cell Environ 19:321–328CrossRefGoogle Scholar
  204. Luwe MW, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101:969–976PubMedPubMedCentralCrossRefGoogle Scholar
  205. Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59:37–49CrossRefGoogle Scholar
  206. Majer P, Hideg É (2012) Existing antioxidant levels are more important in acclimation to supplemental UV-B irradiation than inducible ones: studies with high light pretreated tobacco leaves. Emirates J Food Agric 24:598–606CrossRefGoogle Scholar
  207. Majer P, Vidović M, Czégény G, Veljović-Jovanović S, Strid Å, Hideg E (2016) Evaluation of procedures for assessing anti- and pro-oxidants in plant samples. Anal Methods 8:5569–5580CrossRefGoogle Scholar
  208. Mano JI, Ushimaru T, Asada K (1997) Ascorbate in thylakoid lumen as an endogenous electron donor to photosystem II: protection of thylakoids from photoinhibition and regeneration of ascorbate in stroma by dehydroascorbate reductase. Photosynth Res 53:197–204CrossRefGoogle Scholar
  209. Mano JI, Ohno C, Domae Y, Asada K (2001) Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochim Biophys Acta 1504:275–287PubMedCrossRefGoogle Scholar
  210. Manohar M, Tian M, Moreau M, Park SW, Choi HW, Fei Z, Friso G, Asif M, Manosalva P, von Dahl CC, Shi K (2015) Identification of multiple salicylic acid-binding proteins using two high throughput screens. Front Plant Sci 5:777PubMedPubMedCentralCrossRefGoogle Scholar
  211. Martens S, Preuss A, Matern U (2010) Multifunctional flavonoid dioxygenases: Flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry 71:1040–1049PubMedCrossRefGoogle Scholar
  212. Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2010) Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiol 51:190–200PubMedCrossRefGoogle Scholar
  213. Maruta T, Noshi M, Nakamura M, Matsuda S, Tamoi M, Ishikawa T, Shigeoka S (2014) Ferulic acid 5-hydroxylase 1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis. Plant Sci 219:61–68PubMedCrossRefGoogle Scholar
  214. Mase K, Ishihama N, Mori H, Takahashi H, Kaminaka H, Kodama M, Yoshioka H (2013) Ethylene-responsive AP2/ERF transcription factor MACD1 participates in phytotoxin-triggered programmed cell death. Mol Plant Microbe Interact 26:868–879PubMedCrossRefGoogle Scholar
  215. Masi A, Trentin AR, Arrigoni G (2016) Leaf apoplastic proteome composition in UV-B treated Arabidopsis thaliana mutants impaired in extracellular glutathione degradation. Data Brief 6:368–377PubMedCrossRefGoogle Scholar
  216. McAdam SA, Brodribb TJ (2016) Linking turgor with ABA biosynthesis: implications for stomatal responses to vapour pressure deficit across land plants. Plant Physiol 171:2008–2016PubMedPubMedCentralCrossRefGoogle Scholar
  217. Mehlhorn H (1990) Ethylene-promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat. Plant Cell Environ 13:971–976CrossRefGoogle Scholar
  218. Metz B, Davidson O, Bosch P, Dave R, Meyer L (2007) Climate Change Mitigation. Contribution of Working Group III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  219. Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220PubMedCrossRefGoogle Scholar
  220. Mielecki D, Zugaj DŁ, Muszewska A, Piwowarski J, Chojnacka A, Mielecki M, Nieminuszczy J, Grynberg M, Grzesiuk E (2012) Novel AlkB dioxygenases—alternative models for in silico and in vivo studies. PLoS One 7:e30588PubMedPubMedCentralCrossRefGoogle Scholar
  221. Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144:1777–1785PubMedPubMedCentralCrossRefGoogle Scholar
  222. Mishra K, Ojha H, Chaudhury NK (2012) Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem 130:1036–1043CrossRefGoogle Scholar
  223. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19PubMedCrossRefGoogle Scholar
  224. Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405PubMedCrossRefGoogle Scholar
  225. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefGoogle Scholar
  226. Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4PubMedPubMedCentralCrossRefGoogle Scholar
  227. Miyaji T, Kuromori T, Takeuchi Y, Yamaji N, Yokosho K, Shimazawa A, Sugimoto E, Omote H, Ma JF, Shinozaki K, Moriyama Y (2015) AtPHT4; 4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nat Commun 6:5928PubMedPubMedCentralCrossRefGoogle Scholar
  228. Miyake C, Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33:541–553Google Scholar
  229. Miyake C, Asada K (1994) Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids. Plant Cell Physiol 35:539–549CrossRefGoogle Scholar
  230. Miyake C, Asada K (1996) Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol 37:423–430CrossRefGoogle Scholar
  231. Miyake C, Schreiber U, Hormann H, Sano S, Asada K (1998) The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of superoxide radicals in spinach thylakoid membranes. Plant Cell Physiol 39:821–829CrossRefGoogle Scholar
  232. Mock HP, Dietz K-J (2016) Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochim Biophys Acta 1864:967–973PubMedCrossRefGoogle Scholar
  233. Mojović M, Vuletić M, Bačić GG, Vučinić Ž (2004) Oxygen radicals produced by plant plasma membranes: an EPR spin-trap study. J Exp Bot 55:2523–2531PubMedCrossRefGoogle Scholar
  234. Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173PubMedPubMedCentralCrossRefGoogle Scholar
  235. Moreau M, Tian M, Klessig DF (2012) Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Res 22:1631PubMedPubMedCentralCrossRefGoogle Scholar
  236. Morina F (2011) Biochemical mechanisms of antioxidative response to excess zinc in Common Mullein (Verbascum thapsus L.): interpopulational differences. PhD thesis, University of BelgradeGoogle Scholar
  237. Morina F, Jovanović LJ, Mojović M, Vidović M, Panković D, Veljović-Jovanović S (2010) Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiol Plant 140:209–224PubMedGoogle Scholar
  238. Morina F, Milić S, Mojović M, Veljović-Jovanović S (2012) Hydroxyl radical generation and carbon centre depletion in the root cell wall isolate enriched with copper. Proceedings of XI international conference on fundamental and applied aspects of physical chemistry, Belgrade, Serbia, pp 400–402Google Scholar
  239. Morina F, Jovanović LJ, Prokić LJ, Veljović-Jovanović S (2016) Physiological basis of differential zinc and copper tolerance of Verbascum populations from metal-contaminated and uncontaminated areas. Environ Sci Pollut Res 23:10005–10020CrossRefGoogle Scholar
  240. Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C (2010) Ascorbic acid deficiency in Arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Mol Plant Microbe Interact 23:340–351PubMedCrossRefGoogle Scholar
  241. Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41PubMedPubMedCentralCrossRefGoogle Scholar
  242. Müller-Moulé P, Havaux M, Niyogi KK (2003) Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiol 133:748–760PubMedPubMedCentralCrossRefGoogle Scholar
  243. Müller-Moulé P, Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol 134:1163–1172PubMedPubMedCentralCrossRefGoogle Scholar
  244. Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48PubMedCrossRefGoogle Scholar
  245. Munné-Bosch S, Alegre L (2002) Interplay between ascorbic acid and lipophilic antioxidant defences in chloroplasts of water-stressed Arabidopsis plants. FEBS Lett 524:145–148PubMedCrossRefGoogle Scholar
  246. Munné-Bosch S, Alegre L (2003) Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiol 131:1816–1825PubMedPubMedCentralCrossRefGoogle Scholar
  247. Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19PubMedCrossRefGoogle Scholar
  248. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedCrossRefGoogle Scholar
  249. Murphy TM, Auh CK (1996) The superoxide synthases of plasma membrane preparations from cultured rose cells. Plant Physiol 110:621–629PubMedPubMedCentralCrossRefGoogle Scholar
  250. Nagata T, Todoriki S, Masumizu T, Suda I, Furuta S, Du Z, Kikuchi S (2003) Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. J Agric Food Chem 51:2992–2999PubMedCrossRefGoogle Scholar
  251. Nagy V, Tengölics R, Schansker G, Rákhely G, Kovács KL, Garab G, Tóth SZ (2012) Stimulatory effect of ascorbate, the alternative electron donor of photosystem II, on the hydrogen production of Chlamydomonas reinhardtii. Int J Hydrogen Energy 37:8864–8871CrossRefGoogle Scholar
  252. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439PubMedCrossRefGoogle Scholar
  253. Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct Plant Biol 30:865–873CrossRefGoogle Scholar
  254. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395PubMedCrossRefGoogle Scholar
  255. Neubauer C, Schreiber U (1989) Photochemical and non-photochemical quenching of chlorophyll fluorescence induced by hydrogen peroxide. Z Naturforsch C 44:262–270Google Scholar
  256. Neubauer C, Yamamoto HY (1992) Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. Plant Physiol 99:1354–1361PubMedPubMedCentralCrossRefGoogle Scholar
  257. Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91:727–740PubMedPubMedCentralCrossRefGoogle Scholar
  258. Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692PubMedCrossRefGoogle Scholar
  259. Niu Y, Wang Y, Li P, Zhang F, Liu H, Zheng G (2013) Drought stress induces oxidative stress and the antioxidant defense system in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. Acta Physiol Plant 35:1189–1200CrossRefGoogle Scholar
  260. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279CrossRefGoogle Scholar
  261. Noctor G, Veljović-Jovanović S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850PubMedPubMedCentralCrossRefGoogle Scholar
  262. Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648PubMedPubMedCentralCrossRefGoogle Scholar
  263. Noctor G, Mhamdi A, Foyer CH (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environ 39:1140–1160PubMedCrossRefGoogle Scholar
  264. Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T, Shigeoka S (2016) Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Biosci Biotechnol Biochem 80:870–877PubMedCrossRefGoogle Scholar
  265. Nouchi I, Hayashi K, Hiradate S, Ishikawa S, Fukuoka M, Chen CP, Kobayashi K (2012) Overcoming the difficulties in collecting apoplastic fluid from rice leaves by the infiltration-centrifugation method. Plant Cell Physiol 53:1659–1668PubMedCrossRefGoogle Scholar
  266. O’Leary BM, Rico A, McCraw S, Fones HN, Preston GM (2014) The infiltration-centrifugation technique for extraction of apoplastic fluid from plant leaves using Phaseolus vulgaris as an example. J Vis Exp 94:52113Google Scholar
  267. Oidaira H, Sano S, Koshiba T, Ushimaru T (2000) Enhancement of antioxidative enzyme activities in chilled rice seedlings. J Plant Physiol 156:811–813CrossRefGoogle Scholar
  268. Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAP Kinase transcript levels. Environ Exp Bot 83:53–61CrossRefGoogle Scholar
  269. Ort DR (2001) When there is too much light. Plant Physiol 125:29–32PubMedPubMedCentralCrossRefGoogle Scholar
  270. Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198PubMedCrossRefGoogle Scholar
  271. Ozer A, Bruick RK (2007) Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat Chem Biol 3:144–153PubMedCrossRefGoogle Scholar
  272. Page M, Sultana N, Paszkiewicz K, Florance H, Smirnoff N (2012) The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis. Plant Cell Environ 35:388–404PubMedCrossRefGoogle Scholar
  273. Parsons HT, Fry SC (2012) Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions. Phytochemistry 75:41–49PubMedCrossRefGoogle Scholar
  274. Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468PubMedPubMedCentralCrossRefGoogle Scholar
  275. Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljović-Jovanović S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951PubMedPubMedCentralCrossRefGoogle Scholar
  276. Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139:1291–1303PubMedPubMedCentralCrossRefGoogle Scholar
  277. Pedreira J, Sanz N, Peña MJ, Sánchez M, Queijeiro E, Revilla G, Zarra I (2004) Role of apoplastic ascorbate and hydrogen peroxide in the control of cell growth in pine hypocotyls. Plant Cell Physiol 45:530–534PubMedCrossRefGoogle Scholar
  278. Pei ZM, Murata Y, Benning G, Thomine S (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734PubMedCrossRefGoogle Scholar
  279. Perez IB, Brown PJ (2014) The role of ROS signaling in cross-tolerance: from model to crop. Front Plant Sci 5:754PubMedPubMedCentralCrossRefGoogle Scholar
  280. Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol 6:379–389PubMedCrossRefGoogle Scholar
  281. Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641PubMedPubMedCentralCrossRefGoogle Scholar
  282. Pignocchi C, Kiddle G, Hernández I, Foster SJ, Asensi A, Taybi T, Barnes J, Foyer CH (2006) Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol 141:423–435PubMedPubMedCentralCrossRefGoogle Scholar
  283. Pogson BJ, Woo NS, Forster B, Small ID (2008) Plastid signalling to the nucleus and beyond. Trends Plant Sci 13:602–609PubMedCrossRefGoogle Scholar
  284. Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233PubMedPubMedCentralCrossRefGoogle Scholar
  285. Polle A, Chakrabarti K, Schürmann W, Renneberg H (1990) Composition and properties of hydrogen peroxide decomposing systems in extracellular and total extracts from needles of Norway spruce (Picea abies L., Karst.) Plant Physiol 94:312–319PubMedPubMedCentralCrossRefGoogle Scholar
  286. Poór P, Kovács J, Szopkó D, Tari I (2013) Ethylene signaling in salt stress-and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma 250:273–284PubMedCrossRefGoogle Scholar
  287. Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P, Guisez Y, Asard H (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol 134:1479–1487PubMedPubMedCentralCrossRefGoogle Scholar
  288. Prokić LJ, Morina F, Vidović М, Panković D, Veljović-Jovanović S (2013) Proposed mechanism for drought acclimation in two Verbascum thapsus L. populations differing in metal tolerance. In First international conference on plant biology 20th symposium of the Serbian Plant Society, Subotica, Serbia. Programme and Аbstracts book, p 119Google Scholar
  289. Pyngrope S, Bhoomika K, Dubey RS (2013) Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma 250:585–600PubMedCrossRefGoogle Scholar
  290. Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakiere B, Vanacker H, Miginiac-Maslow M, Van Breusegem F, Noctor G (2007) Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J 52:640–657PubMedCrossRefGoogle Scholar
  291. Rahantaniaina MS, Li S, Chatel-Innocenti G, Tuzet A, Issakidis-Bourguet E, Mhamdi A, Noctor G (2017) Cytosolic and chloroplastic DHARs cooperate in oxidative stress-driven activation of the salicylic acid pathway. Plant Physiol 174:956–971PubMedPubMedCentralCrossRefGoogle Scholar
  292. Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338PubMedCrossRefGoogle Scholar
  293. Rockholm DC, Yamamoto HY (1996) Violaxanthin de-epoxidase (purification of a 43-kilodalton lumenal protein from lettuce by lipid-affinity precipitation with monogalactosyl diacylglyceride). Plant Physiol 110:697–703PubMedPubMedCentralCrossRefGoogle Scholar
  294. Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544PubMedCrossRefGoogle Scholar
  295. Rosa SB, Caverzan A, Teixeira FK, Lazzarotto F, Silveira JA, Ferreira-Silva SL, Abreu-Neto J, Margis R, Margis-Pinheiro M (2010) Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemistry 71:548–558PubMedCrossRefGoogle Scholar
  296. Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006) A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance. Plant Cell Environ 29:269–281PubMedCrossRefGoogle Scholar
  297. Runeckles VC, Vaartnou M (1997) EPR evidence for superoxide anion formation in leaves during exposure to low levels of ozone. Plant Cell Environ 20:306–314CrossRefGoogle Scholar
  298. Russell AW, Critchley C, Robinson SA, Franklin LA, Seaton GG, Chow WS, Anderson JM, Osmond CB (1995) Photosystem II regulation and dynamics of the chloroplast D1 protein in Arabidopsis leaves during photosynthesis and photoinhibition. Plant Physiol 107:943–952PubMedPubMedCentralCrossRefGoogle Scholar
  299. Salinger MJ (2005) Climate variability and change: past, present and future-an overview. Clim Change 70:9–30CrossRefGoogle Scholar
  300. Samuni A, Aronovitch J, Godinger D, Chevion M, Czapski G (1983) On the cytotoxicity of vitamin C and metal ions. FEBS J 137:119–124Google Scholar
  301. Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50CrossRefGoogle Scholar
  302. Sang M, Qin XC, Wang WD, Xie J, Chen XB, Wang KB, Zhang JP, Li LB, Kuang TY (2011) High-light-induced superoxide anion radical formation in cytochrome b6f complex from spinach as detected by EPR spectroscopy. Photosynthetica 49:48–54CrossRefGoogle Scholar
  303. Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928PubMedGoogle Scholar
  304. Sanmartin M, Pateraki I, Chatzopoulou F, Kanellis AK (2007) Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta 225:873–885PubMedCrossRefGoogle Scholar
  305. Saxena I, Srikanth S, Chen Z (2016) Cross-talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci 7:570.  https://doi.org/10.3389/fpls.2016.00570 PubMedPubMedCentralCrossRefGoogle Scholar
  306. Schertl P, Sunderhaus S, Klodmann J, Grozeff GEG, Bartoli CG, Braun HP (2012) L-galactono-1,4-lactone dehydrogenase (GLDH) forms part of three subcomplexes of mitochondrial complex I in Arabidopsis thaliana. J Biol Chem 287:14412–14419PubMedPubMedCentralCrossRefGoogle Scholar
  307. Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin and abscisic acid. Plant Physiol 125:1591–1602PubMedPubMedCentralCrossRefGoogle Scholar
  308. Schutzendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898PubMedPubMedCentralCrossRefGoogle Scholar
  309. Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615–2632PubMedCrossRefGoogle Scholar
  310. Seminario A, Song L, Zulet A, Nguyen HT, González EM, Larrainzar E (2017) Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants. Front Plant Sci 8:1042.  https://doi.org/10.3389/fpls.2017.01042 PubMedPubMedCentralCrossRefGoogle Scholar
  311. Sewelam N, Kazan K, Thomas-Hall SR, Kidd BN, Manners JM, Schenk PM (2013) Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis. PLoS One 8:e70289PubMedPubMedCentralCrossRefGoogle Scholar
  312. Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 524:2207–2211CrossRefGoogle Scholar
  313. Shan C, Liang Z (2010) Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci 178:130–139CrossRefGoogle Scholar
  314. Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50PubMedCrossRefGoogle Scholar
  315. Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550CrossRefGoogle Scholar
  316. Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221CrossRefGoogle Scholar
  317. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037.  https://doi.org/10.1155/2012/217037 Google Scholar
  318. Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z (2014) Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem 82:209–217PubMedCrossRefGoogle Scholar
  319. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319PubMedCrossRefGoogle Scholar
  320. Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141:367–372PubMedPubMedCentralCrossRefGoogle Scholar
  321. Skirycz A, Claeys H, De Bodt S, Oikawa A, Shinoda S, Andriankaja M, Maleux K, Eloy NB, Coppens F, Yoo SD, Saito K (2011) Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23:1876–1888PubMedPubMedCentralCrossRefGoogle Scholar
  322. Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54:39–50PubMedGoogle Scholar
  323. Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multifaceted molecule. Curr Opin Plant Biol 3:229–235PubMedCrossRefGoogle Scholar
  324. Smirnoff N (2008) Ascorbate, tocopherol and carotenoids. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Wiley, Chichester, pp 53–86Google Scholar
  325. Smirnoff N (2011) Vitamin C: the metabolism and functions of ascorbic acid in plants. Adv Bot Res 59:107–177CrossRefGoogle Scholar
  326. Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314PubMedCrossRefGoogle Scholar
  327. Sofo A, Tuzio AC, Dichio B, Xiloyannis C (2005) Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids. Plant Sci 169:403–412CrossRefGoogle Scholar
  328. Spasojević I, Bogdanović-Pristov J (2010) The potential physiological implications of polygalacturonic acid-mediated production of superoxide. Plant Signal Behav 5:1525–1529PubMedPubMedCentralCrossRefGoogle Scholar
  329. Springob K, Nakajima JI, Yamazaki M, Saito K (2003) Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep 20:288–303PubMedCrossRefGoogle Scholar
  330. Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096PubMedCrossRefGoogle Scholar
  331. Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542PubMedCrossRefGoogle Scholar
  332. Suzuki N, Bassil E, Hamilton JS, Inupakutika MA, Zandalinas SI, Tripathy D, Luo Y, Dion E, Fukui G, Kumazaki A, Nakano R (2016) ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One 11:e0147625PubMedPubMedCentralCrossRefGoogle Scholar
  333. Szarka A, Tomasskovics B, Bánhegyi G (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 13:4458–4483PubMedPubMedCentralCrossRefGoogle Scholar
  334. Szarka A, Bánhegyi G, Asard H (2013) The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration. Antioxid Redox Signal 19:1036–1044PubMedPubMedCentralCrossRefGoogle Scholar
  335. Szechyńska-Hebda M, Karpiński S (2013) Light intensity-dependent retrograde signalling in higher plants. J Plant Physiol 170:1501–1516PubMedCrossRefGoogle Scholar
  336. Tabata K, Ôba K, Suzuki K, Esaka M (2001) Generation and properties of ascorbic acid deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1,4-lactone dehydrogenase. Plant J 27:139–148PubMedCrossRefGoogle Scholar
  337. Takahama U (2004) Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: physiological significance of the oxidation reactions. Phytochem Rev 3:207–219CrossRefGoogle Scholar
  338. Takahama U, Egashira T (1991) Peroxidases in vacuoles of Vicia faba leaves. Phytochemistry 30:73–77CrossRefGoogle Scholar
  339. Takahama U, Oniki T (1992) Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol 33:379–387Google Scholar
  340. Takahama U, Oniki T (1997) A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol Plant 101:845–852CrossRefGoogle Scholar
  341. Takahama U, Veljović-Jovanović S, Heber U (1992) Effects of the air pollutant SO2 on leaves inhibition of sulfite oxidation in the apoplast by ascorbate and of apoplastic peroxidase by sulfite. Plant Physiol 100:261–266PubMedPubMedCentralCrossRefGoogle Scholar
  342. Talla S, Riazunnisa K, Padmavathi L, Sunil B, Rajsheel P, Raghavendra AS (2011) Ascorbic acid is a key participant during the interactions between chloroplasts and mitochondria to optimize photosynthesis and protect against photoinhibition. J Biosci 36:163–173PubMedCrossRefGoogle Scholar
  343. Tamás L, Bočová B, Huttová J, Mistrík I, Ollé M (2006) Cadmium-induced inhibition of apoplastic ascorbate oxidase in barley roots. Plant Growth Regul 48:41–49CrossRefGoogle Scholar
  344. Tenhaken R (2014) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771PubMedGoogle Scholar
  345. Thomas CE, McLean LR, Parker RA, Ohlweiler DF (1992) Ascorbate and phenolic antioxidant interactions in prevention of liposomal oxidation. Lipids 27:543–550PubMedCrossRefGoogle Scholar
  346. Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2015) Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 5:12449PubMedPubMedCentralCrossRefGoogle Scholar
  347. Torabinejad J, Donahue JL, Gunesekera BN, Allen-Daniels MJ, Gillaspy GE (2009) VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol 150:951–961PubMedPubMedCentralCrossRefGoogle Scholar
  348. Tóth SZ, Puthur JT, Nagy V, Garab G (2009) Experimental evidence for ascorbate-dependent electron transport in leaves with inactive oxygen-evolving complexes. Plant Physiol 149:1568–1578PubMedPubMedCentralCrossRefGoogle Scholar
  349. Tóth SZ, Nagy V, Puthur JT, Kovács L, Garab G (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiol 156:382–392PubMedPubMedCentralCrossRefGoogle Scholar
  350. Triantaphylidès C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968PubMedPubMedCentralCrossRefGoogle Scholar
  351. Turnbull JJ, Nakajima JI, Welford RW, Yamazaki M, Saito K, Schofield CJ (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis anthocyanidin synthase, flavonol synthase, and flavanone 3β-hydroxylase. J Biol Chem 279:1206–1216PubMedCrossRefGoogle Scholar
  352. Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala H, Park SW (2011a) Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 33:2297PubMedCrossRefGoogle Scholar
  353. Upadhyaya CP, Akula N, Kim HS, Jeon JH, Ho OM, Chun SC, Kim DH, Park SW (2011b) Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing D-galacturonic acid reductase gene in response to various abiotic stresses. Mol Breed 28:105–115CrossRefGoogle Scholar
  354. Van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a plant plasma membrane NADPH-O2-synthase from other NAD(P)H oxidoreductases. Plant Physiol 115:543–550PubMedPubMedCentralCrossRefGoogle Scholar
  355. Vanacker H, Harbinson J, Ruisch J, Carver TLW, Foyer CH (1998) Antioxidant defences of the apoplast. Protoplasma 205:129–140CrossRefGoogle Scholar
  356. Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58PubMedCrossRefGoogle Scholar
  357. Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821PubMedPubMedCentralCrossRefGoogle Scholar
  358. Veljović-Jovanović S (1998) Active oxygen species and photosynthesis: Mehler and ascorbate peroxidase reactions. Iugosl Physiol Pharmacol Acta 34:503–522Google Scholar
  359. Veljović-Jovanović S, Oniki T, Takahama U (1998) Detection of monodehydroascorbic acid radical in sulfite-treated leaves and mechanism of its formation. Plant Cell Physiol 39:1203–1208CrossRefGoogle Scholar
  360. Veljović-Jovanović S, Pignocchi C, Noctor G, Foyer CH (2001) Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol 127:426–435PubMedPubMedCentralCrossRefGoogle Scholar
  361. Veljović-Jovanović S, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40:501–507CrossRefGoogle Scholar
  362. Veljović-Jovanović S, Kukavica B, Cvetić T, Mojović M, Vučinić Ž (2005) Ascorbic acid and the oxidative processes in pea root cell wall isolates: characterization by fluorescence and EPR spectroscopy. Ann N Y Acad Sci 1048:500–504PubMedCrossRefGoogle Scholar
  363. Vidović M, Morina F, Milić S, Albert A, Zechmann B, Tosti T, Winkler JB, Veljović-Jovanović S (2015a) Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. Plant Physiol Biochem 93:44–55PubMedCrossRefGoogle Scholar
  364. Vidović M, Morina F, Milić S, Zechmann B, Albert A, Winkler JB, Veljović-Jovanović S (2015b) UV-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light. Plant Cell Environ 38:968–979PubMedCrossRefGoogle Scholar
  365. Vidović M, Morina F, Milić-Komić S, Vuleta A, Zechmann B, Lj P, Veljović-Jovanović S (2016a) Characterisation of antioxidants in photosynthetic and non-photosynthetic leaf tissues of variegated Pelargonium zonale plants. Plant Biol 18:669–680PubMedCrossRefGoogle Scholar
  366. Vidović M, Morina F, Lj P, Milić-Komić S, Živanović B, Veljović-Jovanović S (2016b) Antioxidative response in variegated Pelargonium zonale leaves and generation of extracellular H2O2 in (peri)vascular tissue induced by sunlight and paraquat. J Plant Physiol 206:25–39PubMedCrossRefGoogle Scholar
  367. Vidović M, Morina F, Veljović-Jovanović S (2017) Stimulation of various phenolics in plants under ambient UV-B radiation. In: Singh VP, Singh S, Prasad SM, Parihar P (eds) UV-B Radiation: from environmental stressor to regulator of plant growth. Wiley-Blackwell, Chichester, pp 9–56CrossRefGoogle Scholar
  368. Vojta L, Carić D, Cesar V, Dunić JA, Lepeduš H, Kveder M, Fulgosi H (2015) TROL-FNR interaction reveals alternative pathways of electron partitioning in photosynthesis. Sci Rep 5:10085PubMedPubMedCentralCrossRefGoogle Scholar
  369. Vuletić M, Hadži-Tašković Šukalović V, Marković K, Kravić N, Vučinić Ž, Maksimović V (2014) Differential response of antioxidative systems of maize (Zea mays L.) roots cell walls to osmotic and heavy metal stress. Plant Biol 16:88–96PubMedCrossRefGoogle Scholar
  370. Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52:400–409PubMedCrossRefGoogle Scholar
  371. Wang HS, Yu C, Zhu ZJ, Yu XC (2011) Overexpression in tobacco of a tomato GMPase gene improves tolerance to both low and high temperature stress by enhancing antioxidation capacity. Plant Cell Rep 30:1029–1040PubMedCrossRefGoogle Scholar
  372. Wang F, Cui X, Sun Y, Dong CH (2013) Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep 32:1099–1109PubMedCrossRefGoogle Scholar
  373. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058PubMedPubMedCentralCrossRefGoogle Scholar
  374. Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G (2015) Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front Plant Sci 6:458PubMedPubMedCentralGoogle Scholar
  375. Weijers D, Wagner D (2016) Transcriptional responses to the auxin hormone. Annu Rev Plant Biol 67:539–574PubMedCrossRefGoogle Scholar
  376. Weisiger RA, Fridovich I (1973) Mitochondrial superoxide dismutase site of synthesis and intramitochondrial localization. J Biol Chem 248:4793–4796PubMedGoogle Scholar
  377. Westphal S, Wagner E, Knollmüller M, Loreth W, Schuler P, Stegmann HB (1992) Impact of aminotriazole and paraquat on the oxidative defence system of spruce monitored by monodehydroascorbic acid. Z Naturforsch C 47:567–572Google Scholar
  378. Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J 16:4806–4816PubMedPubMedCentralCrossRefGoogle Scholar
  379. Wolucka BA, Goossens A, Inzé D (2005) Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot 56:2527–2538PubMedCrossRefGoogle Scholar
  380. Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963PubMedPubMedCentralCrossRefGoogle Scholar
  381. Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J, Deng X (2012a) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–219PubMedCrossRefGoogle Scholar
  382. Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Després C (2012b) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647PubMedCrossRefGoogle Scholar
  383. Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, JQ Y (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856PubMedCrossRefGoogle Scholar
  384. Xie R, Zhang J, Ma Y, Pan X, Dong C, Pang S, He S, Deng L, Yi S, Zheng Y, Lv Q (2017) Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots. Sci Rep 7:42094PubMedPubMedCentralCrossRefGoogle Scholar
  385. Xing X, Zhou Q, Xing H, Jiang H, Wang S (2016) Early abscisic acid accumulation regulates ascorbate and glutathione metabolism in soybean leaves under progressive water stress. J Plant Growth Regul 35:865–876CrossRefGoogle Scholar
  386. Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:915–925PubMedCrossRefGoogle Scholar
  387. Yamamoto A, Bhuiyan MN, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796PubMedCrossRefGoogle Scholar
  388. Yao Y, You J, Ou Y, Ma J, Wu X, Xu G (2015) Ultraviolet-B protection of ascorbate and tocopherol in plants related with their function on the stability on carotenoid and phenylpropanoid compounds. Plant Physiol Biochem 90:23–31PubMedCrossRefGoogle Scholar
  389. Yao Y, He RJ, Xie QL, Song L, He J, Marchant A, Chen XY, AM W (2017) ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol 213:1667–1681PubMedCrossRefGoogle Scholar
  390. Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621PubMedCrossRefGoogle Scholar
  391. Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A, Inupakutika MA, Mittler R (2016) ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J Exp Bot 67:5381–5390PubMedPubMedCentralCrossRefGoogle Scholar
  392. Zechmann B (2014) Compartment specific importance of glutathione during abiotic and biotic stress. Front Plant Sci 5:566PubMedPubMedCentralCrossRefGoogle Scholar
  393. Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233:1–12PubMedCrossRefGoogle Scholar
  394. Zhang Y (2013) Biological role of ascorbate in plants. In: Zhang Y (ed) Ascorbic acid in plants. Springer, New York, pp 7–33CrossRefGoogle Scholar
  395. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761PubMedPubMedCentralCrossRefGoogle Scholar
  396. Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448PubMedPubMedCentralCrossRefGoogle Scholar
  397. Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398PubMedCrossRefGoogle Scholar
  398. Zhang Z, Wang J, Zhang R, Huang R (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287PubMedCrossRefGoogle Scholar
  399. Zhang M, Smith JAC, Harberd NP, Jiang C (2016) The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Mol Biol 91:651–659PubMedCrossRefGoogle Scholar
  400. Zipor G, Oren-Shamir M (2013) Do vacuolar peroxidases act as plant caretakers? Plant Sci 199:41–47PubMedCrossRefGoogle Scholar
  401. Zoeller M, Stingl N, Krischke M, Fekete A, Waller F, Berger S, Mueller MJ (2012) Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol 160:365–378PubMedPubMedCentralCrossRefGoogle Scholar
  402. Zörb C, Geilfus CM, Mühling KH, Ludwig-Müller J (2013) The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J Plant Physiol 170:220–224PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular BiologyČeské BudejoviceCzechia

Personalised recommendations