Advertisement

Contextualized Questionnaire for Investigating Conceptions of the Nature of Science: Procedure and Principles for Elaboration

Chapter
  • 496 Downloads
Part of the Science: Philosophy, History and Education book series (SPHE)

Abstract

The chapter signalizes the importance of the research on Nature of Science (NOS), illustrating how it is maturing in Brazil. The work reports on the procedure employed during the elaboration of a contextualized instrument using Ecology as a model for investigating NOS conceptions among Biological Science undergraduates. The authors propose orientation and principles that contribute toward research procedures, justifying the epistemological and methodological decisions. They also present strategies used for evaluating instrument efficacy, with a question grid constructed, in addition to the procedure and the principles adopted. This strategy furnished an explicit and critical manner of creating new questionnaires that deepened the analysis of the students’ conceptions of NOS.

References

  1. Abd-El-Khalick, F. (2012). Examining the sources for our understandings about science: Enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34(3), 353–374.CrossRefGoogle Scholar
  2. Abd-El-Khalick, F. (2014). The evolving landscape related to assessment of nature of science. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (Vol. II, pp. 621–650). New Jersey: Lawrence Erlbaum Associates.Google Scholar
  3. Aikenhead, G. S. (1973). The measurement of high school students’ knowledge about science and scientists. Science Education, 57(4), 539–549.CrossRefGoogle Scholar
  4. Aikenhead, G. S., & Ryan, A. G. (1992). The development of a new instrument: “Views on Science–Technology–Society” (VOSTS). Science Education, 76(5), 477–491.CrossRefGoogle Scholar
  5. Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95, 518–542.CrossRefGoogle Scholar
  6. Allchin, D. (2013). Teaching the nature of science: Perspectives and resources. Saint Paul: SHiPS Education Press.Google Scholar
  7. Allchin, D. (2015). Correcting the ‘Self-correcting’ mythos of science. Filosofia e História da Biologia, 10, 19–35.Google Scholar
  8. Alters, B. J. (1997). Whose nature of science? Journal of Research in Science Teaching, 34(1), 39–55.CrossRefGoogle Scholar
  9. Azevedo, N. H., & Scarpa, D. L. (2017). A systematic review of studies about conceptions on the nature of science in science education. Revista Brasileira de Pesquisa em Educação em Ciências, 17(2), 621–659.CrossRefGoogle Scholar
  10. Bardin, L. (2009). Análise de conteúdo. Lisboa: Edições 70.Google Scholar
  11. Bell, R. L., & Lederman, N. G. (2003). Understanding of the nature of science and decision making on science and technology based issues. Science Education, 87, 352–377.CrossRefGoogle Scholar
  12. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334.CrossRefGoogle Scholar
  13. Cronbach, L. J. (2004). My current thoughts on coefficient alpha and successor procedures. Educational and Psychological Measurement, 64(3), 391–418.CrossRefGoogle Scholar
  14. DiGiuseppe, M. (2014). Representing nature of science in a science textbook: Exploring author–editor–publisher interactions. International Journal of Science Education, 36(7), 1061–1082.CrossRefGoogle Scholar
  15. Duschl, R. A. (1985). Science education and philosophy of science: Twenty-five years of mutually exclusive development. School Science and Mathematics, 85(7), 541–555.CrossRefGoogle Scholar
  16. Gil, A. C. (1999). Métodos e técnicas de pesquisa social. São Paulo: Editora Atlas.Google Scholar
  17. Gil-Pérez, D., Montoro, I. F., Alís, J. C., Cachapuz, A., & Praia, J. (2001). Para uma imagem não deformada do trabalho científico. Ciência and Educação, 7(2), 125–153.CrossRefGoogle Scholar
  18. Gliem, J. A., & Gliem, R. R. (2003). Calculating, interpreting and reporting Cronbach’s alpha reliability coefficient for Likert-type scales. In Midwest research to practice conference in adult, continuing, and community education (pp. 82–88). http://www.alumni-osu.org/midwest/proceeding.html. Accessed 20 Jul 2016.
  19. Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science & Education, 20, 591–607.CrossRefGoogle Scholar
  20. Kline, R. B. (2005). Principles and practice of structural equation modeling. New York: The Guilford Press.Google Scholar
  21. Laudan, L. (1981). Science and hypothesis: Historical essays on scientific methodology, The University of Western Ontario Series in Philosophy of Science (Vol. 19). Dordrecht: Springer.CrossRefGoogle Scholar
  22. Lawton, J. H. (1999). Are there general laws in ecology? Oikos, 84, 177–192.CrossRefGoogle Scholar
  23. Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331–359.CrossRefGoogle Scholar
  24. Lederman, N. G. (2007). Nature of science: Past, present and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–880). New Jersey: Lawrence Erlbaum Associates.Google Scholar
  25. Lederman, N. G., & Lederman, J. S. (2014). Research on teaching and learning of nature of science. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 600–620). New Jersey: Lawrence Erlbaum Associates.Google Scholar
  26. Lederman, N. G., & O’Malley, M. (1990). Student’s perceptions of tentativeness in science: Development, use and sources of change. Science Education, 74(2), 225–239.CrossRefGoogle Scholar
  27. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497–521.CrossRefGoogle Scholar
  28. Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 1–55.Google Scholar
  29. Manassero, M. A., & Vázquez, A. A. (2001). Instrumentos y métodos para la evaluación de las actitudes relacionadas con la ciencia, la tecnología y la sociedad. Enseñanza de las Ciencias, 1(20), 15–27.Google Scholar
  30. Maroco, J., & Garcia-Marques, T. (2006). Qual a fiabilidade do alfa de Cronbach? Questões antigas e soluções modernas. Laboratório de Psicologia, 4(1), 65–90.Google Scholar
  31. Matthews, M. R. (1992). History, philosophy and science teaching: The present rapprochement. Science & Education, 1(1), 11–48.CrossRefGoogle Scholar
  32. Matthews, M. R. (2012). Changing the focus: From nature of science (NOS) to features of science (FOS). In M. S. Khine (Ed.), Advances in nature of science research: Concepts and methodologies (pp. 3–26). Dordrecht: Springer.CrossRefGoogle Scholar
  33. Mayr, E. (2004). What makes biology unique? Considerations on the autonomy of a scientific discipline. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. McComas, W. F. (2008). Seeking historical examples to illustrate key aspects of the nature of science. Science & Education, 17(2–3), 249–263.CrossRefGoogle Scholar
  35. McComas, W. F., & Olson, J. K. (1998). The nature of science in international science education standards documents. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 41–52). Dordrecht: Kluwer.Google Scholar
  36. McComas, W. F., Almazora, H., & Clough, M. P. (1998). The nature of science in science education: An introduction. Science & Education, 7(6), 511–532.CrossRefGoogle Scholar
  37. McIntosh, R. P. (1987). Pluralism in ecology. Annual Review of Ecology and Systematics, 18, 321–341.CrossRefGoogle Scholar
  38. Monk, M., & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: A model for the development of pedagogy. Science Education, 81(4), 405–424.CrossRefGoogle Scholar
  39. Murray, B. G. (1992). Research methods in physics and biology. Oikos, 64, 594–596.CrossRefGoogle Scholar
  40. Murray, B. G. (2001). Are ecological and evolutionary theories scientific? Biological Reviews, 76, 255–289.CrossRefGoogle Scholar
  41. Neumann, I., Neumann, K., & Nehm, R. (2011). Evaluating instrument quality in science education: Rasch-based analyses of a nature of science test. International Journal of Science Education, 33(10), 1373–1405.CrossRefGoogle Scholar
  42. Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40, 692–720.CrossRefGoogle Scholar
  43. Oviedo, H. C., & Campo-Arias, A. (2005). Aproximación al uso del coeficiente alfa de Cronbach. Revista Colombiana de Psiquiatría, 34(4), 572–580.Google Scholar
  44. Paraskevopoulou, E., & Koliopoulos, D. (2011). Teaching the nature of science through the Millikan-Ehrenhaft dispute. Science & Education, 20(10), 943–960.CrossRefGoogle Scholar
  45. Parassuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of Marketing, 49(4), 41–50.CrossRefGoogle Scholar
  46. Robinson, J. T. (1965). Science teaching and the nature of science. Journal of Research in Science Teaching, 3(1), 37–50.CrossRefGoogle Scholar
  47. Romero, F. (2016). Can the behavioral sciences self-correct? A social epistemic study. Studies in History and Philosophy of Science, 60(A), 55–69.CrossRefGoogle Scholar
  48. Rosenberg, A. (2008). Biology. In M. Curd & S. Psillos (Eds.), The Routledge companion to philosophy of science (pp. 511–519). London: Routledge.Google Scholar
  49. Seroglou, F., & Koumaras, P. (2001). The contribution of the history of physics in physics education: A review. Science & Education, 10(1–2), 153–172.CrossRefGoogle Scholar
  50. Sober, E. (1997). Two outbreaks of lawlessness in recent philosophy of biology. Philosophy of Science, 64, 458–467.CrossRefGoogle Scholar
  51. Stanley, W. B., & Brickhouse, N. W. (2001). Teaching science: The multicultural question revisited. Science Education, 85(1), 35–49.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of BiosciencesUniversity of São PauloSão PauloBrazil

Personalised recommendations