Natural History, Chemistry, and Teaching in Modern Scientific Culture

Part of the Science: Philosophy, History and Education book series (SPHE)


This work proposes that a historically delimited study can offer teachers the opportunity to problematize with students the historicity of scientific knowledge and its social, economic, pedagogical, and philosophical implications. The authors intend to draw attention to the centrality of chemical knowledge in modern scientific culture and how chemistry teaching is a manifestation of that social interest. Francis Bacon’s new program for natural history in the seventeenth century, more specifically his view of the history of arts, was adopted as the core idea of the work.

The first goal is to describe the reasons that made chemistry the fundamental knowledge of Bacon’s new program. The purpose is to point out the shared objectives between the natural history of arts and chemistry teaching, as laid out in the manuals and courses inspired by the lessons about the Baconian chemical philosophy of the physician–chemist Herman Boerhaave and his French “disciples.” The authors highlight the case of the chemist Guyton de Morveau and his group at the Dijon Academy, not only for their pedagogical innovations but, above all, for their central role in French chemistry at the end of the eighteenth century and their active participation in the reformulation of chemical nomenclature. However, they point out that this linguistic–conceptual revolution also marked a pedagogical rupture, in which the history of chemistry was no longer necessary for the learning of this science.


Modern Scientific Culture Boerhaave Dijon Academy Chemical Knowledge Chemical Education 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aristotle. (1984). Metaphysics. In J. Barnes (Ed.), The complete works of Aristotle (Vol. 2, pp. 1552–1728). Princeton: Princeton University Press.Google Scholar
  2. Bacon, F. (1963a). Advancement of learning. In J. Spedding, R. Leslie, & D. D. Heath (Eds.), The works of Francis Bacon (Vol. III, pp. 253–491). London: Longman.Google Scholar
  3. Bacon, F. (1963b). Novus Orbis Scientiarum, sive Desiderata. In J. Spedding, R. Leslie, & D. D. Heath (Eds.), The works of Francis Bacon (Vol. I, pp. 838–840). London: Longman.Google Scholar
  4. Bacon, F. (1963c). Description of a natural and experimental history. In J. Spedding, R. Leslie, & D. D. Heath (Eds.), The works of Francis Bacon (Vol. IV, pp. 251–263). London: Longman.Google Scholar
  5. Bacon, F. (2006). Historia vitae & mortis. In G. Rees (Ed.), The Oxford Francis Bacon (Vol. 12, pp. 142–377). Oxford: Oxford University Press.Google Scholar
  6. Bacon, F. (2007). Historia densi & rare. In G. Rees (Ed.), The Oxford Francis Bacon (Vol. 13, pp. 36–169). Oxford: Oxford University Press.Google Scholar
  7. Bensaude-Vincent, B. (2003). La nature laboratoire. In I. B. Bensaude-Vincent & B. Bernardi (Eds.), Rousseau et les sciences (pp. 155–174). Paris: L’Harmattan.Google Scholar
  8. Bensaude-Vincent, B., & Simon, J. (2008). Chemistry: The impure science. London: Imperial College Press.CrossRefGoogle Scholar
  9. Bensaude-Vincent, B., Belmar, A., & Bertomeu, J. R. (2003). L’émergence d’une science des manuels. Paris: Éditions des Archives Contemporaines.Google Scholar
  10. Boerhaave, H. (1753). A new method of chemistry. Translated from the original Latin of Dr. Boerhaave Elementa Chemiae by Peter Shaw. London: Longman.Google Scholar
  11. Boyle, R. (1999). The works of Robert Boyle (Vol. 3, M. Hunter &, E. Davis, Eds.). London: Pickering & Chatto.Google Scholar
  12. Brasil, Ministério da Educação. (2000). Parâmetros Curriculares para o Ensino Médio. Brasília: Ministério da Educação.Google Scholar
  13. Brasil, Ministério da Educação. (2006). Orientações Curriculares para o Ensino Médio (Vol. 3). Brasília: Ministério da Educação.Google Scholar
  14. Bret, P. (Org.). (2016). Louis-Bernard Guyton, “l’illustre chimiste de la République”. Annales historiques de la Révolution française, 383. Paris: Armand Colin.Google Scholar
  15. Crosland, M. P. (1978). Historical studies in the language of chemistry. New York: Dover Publications.Google Scholar
  16. Debus, A. G. (1977). The chemical philosophy. Mineola: Dover Publications.Google Scholar
  17. Diderot, D. ([1875] 2005). De l’interprétation de la nature. Paris: Flammarion.Google Scholar
  18. Giglioni, G. (2012). Historia and materia: The implications of Francis Bacon’s natural history. Early Science and Medicine, 17, 62–86.CrossRefGoogle Scholar
  19. Guyton de Morveau, L.-B. (1782). Mémoire sur les dénominations chimiques, la nécessité d’en perfectionner le système, les règles pour y parvenir, suivi d’un tableau d’une nomenclature chimique. Observations sur la Physique, 19, 370–382.Google Scholar
  20. Guyton de Morveau, L.-B. (1786). Encyclopédie méthodique: Chymie, pharmacie et métallurgie, t.1. Paris: Panckoucke.Google Scholar
  21. Hannaway, O. (1975). The chemists & the word: The didactic origins of chemistry. Baltimore: Johns Hopkins University Press.Google Scholar
  22. Kim, M. G. (2003). Affinity, that elusive dream: A genealogy of chemical revolution. Cambridge, MA: MIT Press.Google Scholar
  23. Klein, U., & Lefèvre, W. (2007). Materials in eighteenth-century science: A historical ontology. Cambridge, MA: MIT Press.Google Scholar
  24. Kuhn, T. S. (1961). The function of measurement in modern Physical Science. Isis, 52, 161–193.CrossRefGoogle Scholar
  25. Lavoisier, A. ([1789] 1937). Traité élémentaire de chimie. Paris: Guther-Villar Éditeur.Google Scholar
  26. Llana, J. W. (1985). A contribution of natural history to the chemical revolution in France. Ambix, 32, 71–91.CrossRefGoogle Scholar
  27. Luna, F. (2013). Vicente de Seabra Telles e a criação da nomenclatura em português para a química “nova” de Lavoisier. Química Nova, 36, 921–926.CrossRefGoogle Scholar
  28. Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge.Google Scholar
  29. Miller, P. (2005). Description terminable and interminable: Looking at the past, nature and peoples in Peiresc’s archive. In G. Pomata & N. G. Siraisi (Eds.), Historia, empiricism and erudition in early modern Europe (pp. 355–397). MIT Press: Cambridge, MA.Google Scholar
  30. Niaz, M. (2001). How important are the laws of definite and multiple proportions in chemistry and teaching chemistry? A history and philosophy of science perspective. Science & Education, 10, 243–266.Google Scholar
  31. Paixão, F., & Cachapuz, A. (2003). Mudança na prática de ensino da química pela formação dos professores em história e filosofia das ciências. Química Nova na Escola, 18, 31–36.Google Scholar
  32. Pépin, F. (2012). La philosophie expérimentale de Diderot et la chimie: Philosophie, sciences et arts. Paris: Garnier.Google Scholar
  33. Peterschmitt, L. (2005). Bacon et la chimie: a propôs de la réception de la philosophie naturelle de Francis Bacon aux XVIIe et XVIIIe siècles. Methodos, 5, 1–22. Accessed 20 July 2016.Google Scholar
  34. Powers, J. C. (2012). Inventing chemistry: Herman Boerhaave and the reform of the chemical arts. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  35. Principe, L. (Ed.). (2007). New narratives in eighteenth-century chemistry. Contributions from the First Francis Bacon Workshop, 21–23 April 2005, California Institute of Technology, Pasadena, California. Dordrecht: Springer.Google Scholar
  36. Simon, J. (1999). L’Homme de verre? Les trois regnes et la promiscuité de la nature. Corpus, 36, 65–80.Google Scholar
  37. Sukopp, T. (2013). Robert Boyle, Baconian science and the rise of chemistry in the seventeenth century. Society and Politics, 7, 54–73.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Federal University of ABC (UFABC)Santo AndréBrazil
  2. 2.Federal University of Paraná (UFPR)CuritibaBrazil

Personalised recommendations