Advertisement

Optimal Paths in Business Processes: Framework and Applications

  • Marco ComuzziEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 308)

Abstract

We present an innovative framework for calculating optimal execution paths in business processes using the abstraction of workflow hypergraphs. We assume that information about the utility associated with the execution of activities in a process is available. Using the workflow hypergraph abstraction, finding a utility maximising path in a process becomes a generalised shortest hyperpath problem, which is NP-hard. We propose a solution that uses ant-colony optimisation customised to the case of hypergraph traversal. We discuss three possible applications of the proposed framework: process navigation, process simulation, and process analysis. We also present a brief performance evaluation of our solution and an example application.

Keywords

Process simulation Process navigation Process analysis Optimal path Workflow hypergraph 

References

  1. 1.
    Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans. Softw. Eng. 33(6), 369–384 (2007)CrossRefGoogle Scholar
  2. 2.
    Barba, I., Weber, B., Del Valle, C., Jiménez-Ramírez, A.: User recommendations for the optimized execution of business processes. Data Knowl. Eng. 86, 61–84 (2013)CrossRefGoogle Scholar
  3. 3.
    Comuzzi, M., Vanderfeesten, I.T.P., Wang, T.: Optimized cross-organizational business process monitoring: design and enactment. Inf. Sci. 244, 107–118 (2013)CrossRefGoogle Scholar
  4. 4.
    Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M., ter Hofstede, A.H.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)CrossRefGoogle Scholar
  5. 5.
    Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M., Rizzi, W.: Predictive business process monitoring framework with hyperparameter optimization. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 361–376. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39696-5_22 Google Scholar
  6. 6.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRefGoogle Scholar
  7. 7.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.: Fundamentals of Business Process Management, vol. 1. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-33143-5 CrossRefGoogle Scholar
  8. 8.
    Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discret. Appl. Math. 42(2–3), 177–201 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ghattas, J., Soffer, P., Peleg, M.: Improving business process decision making based on past experience. Decis. Support Syst. 59, 93–107 (2014)CrossRefGoogle Scholar
  10. 10.
    Haisjackl, C., Weber, B.: User assistance during process execution - an experimental evaluation of recommendation strategies. In: zur Muehlen, M., Su, J. (eds.) BPM 2010. LNBIP, vol. 66, pp. 134–145. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20511-8_12 CrossRefGoogle Scholar
  11. 11.
    Jula, A., Sundararajan, E., Othman, Z.: Cloud computing service composition: a systematic literature review. Expert Syst. Appl. 41(8), 3809–3824 (2014)CrossRefGoogle Scholar
  12. 12.
    Laguna, M., Marklund, J.: Business Process Modeling, Simulation and Design. CRC Press, Boca Raton (2013)Google Scholar
  13. 13.
    Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A Markov prediction model for data-driven semi-structured business processes. Knowl. Inf. Syst. 42(1), 97–126 (2015)CrossRefGoogle Scholar
  14. 14.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06257-0_6 CrossRefGoogle Scholar
  15. 15.
    Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of techniques and tools. ACM Comput. Surv. (CSUR) 48(3), 33 (2016)Google Scholar
  16. 16.
    Polyvyanyy, A., Weske, M.: Hypergraph-based modeling of ad-hoc business processes. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 278–289. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00328-8_27 CrossRefGoogle Scholar
  17. 17.
    Polyvyanyy, A., Smirnov, S., Weske, M.: Business process model abstraction. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1. IHIS, pp. 147–165. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-642-45100-3_7 Google Scholar
  18. 18.
    Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-Markovian stochastic Petri nets. Inf. Syst. 54, 1–14 (2015)CrossRefGoogle Scholar
  19. 19.
    Schonenberg, H., Weber, B., van Dongen, B., van der Aalst, W.: Supporting flexible processes through recommendations based on history. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85758-7_7 CrossRefGoogle Scholar
  20. 20.
    Thakur, M., Tripathi, R.: Linear connectivity problems in directed hypergraphs. Theor. Comput. Sci. 410, 2592–2618 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Aalst, W.M.P.: TomTom for business process management (TomTom4BPM). In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 2–5. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02144-2_2 CrossRefGoogle Scholar
  22. 22.
    Van der Aalst, W.M., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)CrossRefGoogle Scholar
  23. 23.
    van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification, decidability, and analysis. Form. Asp. Comput. 23(3), 333–363 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.: Product-based workflow support. Inf. Syst. 36(2), 517–535 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea

Personalised recommendations