Advertisement

Towards Guidelines of Modeling for Ecology-Aware Process Design

  • Patrick LübbeckeEmail author
  • Peter Fettke
  • Peter Loos
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 308)

Abstract

During the last couple of years, the ecological impact of manufacturing and logistical processes gained importance. Many global players, including Walmart, Kellogg’s and L’Oréal, oblige their suppliers to eliminate greenhouse gas emissions in their operations. Contrary to this development, traditional process models are mostly compiled using entities, roles, or resources that are relevant for a mere economical description of a business process. To account for the rising importance of ecological matters, with this work in progress paper we provide ecology-oriented Guidelines of Modeling (EGoM). These design principles allow to compile process models, that can be assessed and optimized in terms of their ecological footprint. The principles are tested through the application of a technique for compliance checking, where we implement a search algorithm for ecological weakness patterns in process models to the BPM software ARIS. The results indicate that the Guidelines foster the application of Green BPM methods that help achieving ecology-friendly process design.

Keywords

Process modeling Modeling principles Green BPM 

Notes

Acknowledgement

The research described in this paper was supported by a grant from the German Ministry of Education and Research (BMBF), project name GreenFlow, support code 01IS12050.

References

  1. 1.
    Pyper, J.: Business: 64 companies follow Wal-Mart’s effort to reduce suppliers’ emissions (2013). http://www.eenews.net/climatewire/stories/1059981502
  2. 2.
    Watson, R.T., Boudreau, M.-C., Chen, A.J.: Information systems and environmentally sustainable development: energy informatics and new directions for the IS community. Manag. Inf. Syst. Q. 34, 23–38 (2010)CrossRefGoogle Scholar
  3. 3.
    Lee, H., Ryu, K., Son, Y.J., Cho, Y.: Capturing green information and mapping with MES functions for increasing manufacturing sustainability. Int. J. Precis. Eng. Manuf. 15, 1709–1716 (2014).  https://doi.org/10.1007/s12541-014-0523-6 CrossRefGoogle Scholar
  4. 4.
    Lübbecke, P., Fettke, P., Loos, P.: Sustainability patterns for the improvement of IT-related business processes with regard to ecological goals. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 428–439. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58457-7_31 CrossRefGoogle Scholar
  5. 5.
    Houy, C., Reiter, M., Fettke, P., Loos, P., Hoesch-Klohe, K., Ghose, A.: Advancing business process technology for humanity: opportunities and challenges of green BPM for sustainable business activities. In: vom Brocke, J., Seidel, S., Recker, J. (eds.) Green Business Process Management, pp. 75–92. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-642-27488-6_5 Google Scholar
  6. 6.
    Becker, J., Rosemann, M., Schütte, R.: Grundsätze ordnungsmäßiger Modellierung. Wirtschaftsinformatik 37, 435–445 (1995)Google Scholar
  7. 7.
    Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of business process modeling. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 30–49. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45594-9_3 CrossRefGoogle Scholar
  8. 8.
    von Carlowitz, H.C.: Sylvicultura Oeconomica (1713)Google Scholar
  9. 9.
    World Commission on Environment and Development: Report of the WCoED: our common future. Med. Confl. Surviv. 4, 300 (1987)Google Scholar
  10. 10.
    Adams, W.M.: The Future of Sustainability (2006).  https://doi.org/10.1007/1-4020-4908-0
  11. 11.
    Seidel, S., Recker, J., vom Brocke, J.: Green business process management. In: vom Brocke, J., Seidel, S., Recker, J.C. (eds.) Green Business Process Managementt, pp. 3–13. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27488-6_1 CrossRefGoogle Scholar
  12. 12.
    Recker, J.C., Rosemann, M., Hjalmarsson, A., Lind, M.: Modeling and analyzing the carbon footprint of business processes. In: vom Brocke, J., Seidel, S., Recker, J.C. (eds.) Green Business Process Management, pp. 93–109. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27488-6_6 CrossRefGoogle Scholar
  13. 13.
    Wesumperuma, A., Ginige, J.A., Ginige, A., Hol, A.: A framework for multi-dimensional business process optimization for GHG emission mitigation. In: Australasian Conference on Information Systems, pp. 1–10 (2011)Google Scholar
  14. 14.
    Nowak, A., Leymann, F., Schleicher, D., et al.: Green business process patterns. In: Proceedings of the 18th Conference on Pattern Languages of Programs - PLoP 2011, pp. 1–10 (2011)Google Scholar
  15. 15.
    Opitz, N., Erek, K., Langkau, T., et al.: Kick-starting green business process management–suitable modeling languages and key processes for green performance measurement. In: Americas Conference on Information Systems, pp. 1–10 (2012)Google Scholar
  16. 16.
    Schuette, R., Rotthowe, T.: The guidelines of modeling – an approach to enhance the quality in information models. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 240–254. Springer, Heidelberg (1998).  https://doi.org/10.1007/978-3-540-49524-6_20 CrossRefGoogle Scholar
  17. 17.
    Reiter, M., Fettke, P., Loos, P.: Towards a reference model for ecological IT service management. In: International Conference on Information Systems, Milan, pp. 1–20 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.German Research Center for Artificial IntelligenceSaarland UniversitySaarbrückenGermany

Personalised recommendations