E-Government Services: Comparing Real and Expected User Behavior

  • A. A. KalenkovaEmail author
  • A. A. Ageev
  • I. A. Lomazova
  • W. M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 308)


E-government web services are becoming increasingly popular among citizens of various countries. Usually, to receive a service, the user has to perform a sequence of steps. This sequence of steps forms a service rendering process. Using process mining techniques this process can be discovered from the information system’s event logs. A discovered process model of a real user behavior can assist in the analysis of service usability. Thus, for popular and well-designed services this process model will coincide with a reference process model of the expected user behavior. While for other services the observed real behavior and the modeled expected behavior can differ significantly. The main aim of this work is to suggest an approach for the comparison of process models and evaluate its applicability when applied to real-life e-government services.


E-government services BPM mining Increasing citizen acceptance Business process quality Process discovery Comparing process models BPMN (Business Process Model and Notation) 



This work was supported by the Basic Research Program at the National Research University Higher School of Economics and funded by RFBR and Moscow city Government according to the Research project No 15-37-70008 “mol_a_mos”.


  1. 1.
    Gebba, T., Zakaria, M.: E-government in Egypt: An analysis of practices and challenges. Int. J. Bus. Res. Dev. 4(2), 11–25 (2012)Google Scholar
  2. 2.
    Rorissa, A., Demissie, D.: An analysis of African e-government service websites. Gov. Inf. Quart. 27(2), 161–169 (2010)CrossRefGoogle Scholar
  3. 3.
    Ha, H., Coghill, K.: E-government in Singapore - a SWOT and PEST analysis. Asia Pac. Soc. Sci. Rev. 6(2), 103–130 (2008)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P.: Process Mining: Data Science in Action, 2nd edn. Springer, Heidelberg (2016). CrossRefGoogle Scholar
  5. 5.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  6. 6.
    van der Aalst, W.M.P., Weijters, A., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  7. 7.
    Weijters, A., Ribeiro, J.: Flexible heuristics miner (FHM). In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2011), Paris, France, IEEE. pp. 310–317, April 2011Google Scholar
  8. 8.
    van der Aalst, W.M.P., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E., Günther, C.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)CrossRefGoogle Scholar
  9. 9.
    Carmona, J., Cortadella, J.: Process mining meets abstract interpretation. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 184–199. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  10. 10.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  11. 11.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Cham (2014). CrossRefGoogle Scholar
  12. 12.
    OMG: Business Process Model and Notation (BPMN). Object Management Group, formal/2013-12-09 (2013)Google Scholar
  13. 13.
    Kalenkova, A., de Leoni, M., van der Aalst, W.M.P.: Discovering, analyzing and enhancing BPMN models using ProM. In: Proceedings of the BPM Demo Sessions 2014 Co-located with the 12th International Conference on Business Process Management, p. 36 (2014)Google Scholar
  14. 14.
    Kalenkova, A., van der Aalst, W.M.P., Lomazova, I., Rubin, V.: Process mining using BPMN: relating event logs and process models. Softw. Syst. Model. 16(4), 1019–1048 (2017)CrossRefGoogle Scholar
  15. 15.
    Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: Proceedings of the 2011 IEEE 15th International Enterprise Distributed Object Computing Conference, EDOC 2011, Washington, DC, USA, pp. 55–64. IEEE Computer Society (2011)Google Scholar
  16. 16.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards robust conformance checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010. LNBIP, vol. 66, pp. 122–133. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  17. 17.
    Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. SMC 13(3), 353–362 (1983)CrossRefzbMATHGoogle Scholar
  18. 18.
    Ivanov, S., Kalenkova, A., van der Aalst, W.M.P.: BPMNDiffViz: a tool for BPMN models comparison. In: Proceedings of the BPM Demo Session 2015 Co-located with the 13th International Conference on Business Process Management. pp. 35–39 (2015)Google Scholar
  19. 19.
    Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical use of the business process modeling notation. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  20. 20.
    Zeng, Z., Tung, A., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009)CrossRefGoogle Scholar
  21. 21.
    Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 10, 707 (1966)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. SSC 4(2), 100–107 (1968)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations