Advertisement

Knowledge-intensive Process: A Research Framework

  • Flavia Maria SantoroEmail author
  • Fernanda Araujo Baião
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 308)

Abstract

Great value is now being credited to the so-called Knowledge-intensive Processes (KiP) benefiting from the advent and proliferation of social media, smart devices, real-time computing, and technologies for big data. Our research investigates the origin, formalization, and support for KiP towards what we call a Knowledge-intensive Process-Aware Information System (KiPAIS). We propose a research framework to address the following challenges, aligned with the pillars of the CBPM due to intrinsic relationships among them: (1) eliciting and discovering KiP; (2) representation and support to the implementation of KiP; (3) formal theory capable of explaining KiP; (4) measuring the performance of KiP.

Keywords

Knowledge-intensive Process Cognitive BPM 

References

  1. 1.
    Austin, J.L.: How to Do Things with Words. Oxford University Press, Oxford (1975)CrossRefGoogle Scholar
  2. 2.
    Barboza, T., Baião, F.A., Santoro, F.M.: Applying Multi-level typing to Model Knowledge-intensive Processes. DSc and MSc Consortium on Ontologies, ONTOBRAS, Brasília (2017)Google Scholar
  3. 3.
    Campos, J.G., Richetti, P.H., Baião, F.A., Santoro, F.M.: Discovering business rules in knowledge-intensive processes through decision mining: an experimental study. In: Teniente, E., Weidlich, M. (eds.) BPM 2017 Workshops. LNBIP, vol. 308, pp. 554–565. Springer, Cham (2018)Google Scholar
  4. 4.
    Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzard, G.: Multi-level ontology-based conceptual modeling. Data Knowl. Eng. 109, 3–4 (2017)CrossRefGoogle Scholar
  5. 5.
    Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: an overview of contemporary approaches. In: 1st International Workshop on Knowledge-Intensive Business Processes, pp. 33–47 (2012)Google Scholar
  6. 6.
    França, J.B.S., Netto, J.M., Carvalho, J.E.S., Santoro, F.M., Baião, F.A., Pimentel, M.: KIPO: the knowledge-intensive process ontology. Softw. Syst. Model. 14(3), 1127–1157 (2015)CrossRefGoogle Scholar
  7. 7.
    Gonçalves, J.C.A.R., Baião, F., Santoro, F.M., Revoredo, K.: Discovering intentions and desires within knowledge intensive processes. In: Reichert, M., Reijers, H.A. (eds.) BPM Workshops 2015. LNBIP, vol. 256, pp. 273–285. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42887-1_22 CrossRefGoogle Scholar
  8. 8.
    Guizzardi, G., Wagner, G.: A unified foundational ontology and some applications of it in business modeling. In: CAiSE 2004 Workshops, vol. 3, pp. 129–143 (2004)Google Scholar
  9. 9.
    Hull, R., Motahari Nezhad, H.R.: Rethinking BPM in a cognitive world: transforming how we learn and perform business processes. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 3–19. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_1 CrossRefGoogle Scholar
  10. 10.
    Isik, O., Mertens, W., den Bergh, J.V.: Practices of knowledge intensive process management: quantitative insights. BPM J. 19(3), 515–534 (2013)Google Scholar
  11. 11.
    Junghanns, M., Petermann, A., Neumann, M., Rahm, E.: Management and analysis of big graph data: current systems and open challenges. In: Zomaya, A.Y., Sakr, S. (eds.) Handbook of Big Data Technologies, pp. 457–505. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-49340-4_14 CrossRefGoogle Scholar
  12. 12.
    Marjanovic, O., Freeze, R.: Knowledge intensive business processes: theoretical foundations and research challenges. In: 44th IEEE Hawaii International Conference System Sciences (HICSS), pp. 1–10 (2011)Google Scholar
  13. 13.
    Moura, E.V., Santoro, F.M., Baião, F.A.: XCuteKIP: support for knowledge intensive process activities. In: Baloian, N., Zorian, Y., Taslakian, P., Shoukouryan, S. (eds.) CRIWG 2015. LNCS, vol. 9334, pp. 164–180. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22747-4_13 Google Scholar
  14. 14.
    Netto, J.M., França, J.B.S., Baião, F.A., Santoro, F.M.: A notation for knowledge-intensive processes. In: 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Whistler, vol. 1, pp. 190–195 (2013)Google Scholar
  15. 15.
    Nunes, V.T., Santoro, F.M., Werner, C.M.L., Ralha, C.G.: Real-time process adaptation: a context-aware replanning approach. IEEE Trans. Syst. Man Cybern. Syst. 1(99), 1–20 (2016)Google Scholar
  16. 16.
    Ortega, A.R., Resinas, M., Cabanilla, C., Ruiz-Cortés, A.: On the definition and design-time analysis of process performance indicators. Inf. Syst. 38(4), 470–490 (2013). Special Section on BPM 2011 Conference (2013)CrossRefGoogle Scholar
  17. 17.
    Ramos, E.C., Santoro, F.M., Baião, F.A.: A method for discovering the relevance of external context variables to business processes. In: International Conference on Knowledge Management and Information Sharing (KMIS), Paris (2011)Google Scholar
  18. 18.
    Richetti, P.H.P., Gonçalves, J.C.A.R., de Baião, F.A., Santoro, F.M.: Analysis of knowledge-intensive processes focused on the communication perspective. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 269–285. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65000-5_16 CrossRefGoogle Scholar
  19. 19.
    Rosa, M., Reijers, H., van der Aalst, W., Dijkman, R., Mendling, J., Dumas, M., Garcia-Bañuelos, L.: APROMORE: an advanced process model repository. Expert Syst. Appl. 38(6), 7029–7040 (2011)CrossRefGoogle Scholar
  20. 20.
    Searle, J.R.: A taxonomy of illocutionary acts. Linguistic Agency University of Trier (1976)Google Scholar
  21. 21.
    Soares, D., Santoro, F., Baião, F.: Discovering collaborative knowledge-intensive processes through e-mail mining. J. Netw. Comput. Appl. 36, 1451–1465 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Flavia Maria Santoro
    • 1
    Email author
  • Fernanda Araujo Baião
    • 1
  1. 1.Federal University of the State of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations