Using Smart Edge Devices to Integrate Consumers into Digitized Processes: The Case of Amazon Dash-Button

  • Michael MöhringEmail author
  • Barbara Keller
  • Rainer Schmidt
  • Lara Pietzsch
  • Leila Karich
  • Carolin Berhalter
  • Karsten Kilian
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 308)


Integrating consumers into business processes has always created special challenges. However, smart edge devices improve the integration of consumers into processes significantly. Smart edge devices such as the Amazon Dash-Button allow to trigger processes with the simple press on a button from everywhere. In this empirical research we conducted a pre-study to explore the potential value provided by smart devices such as the Amazon Dash-Button to extend the reach of business processes. Thus, we present the design of the pre-study and first results.


Smart edge devices IoT Retail processes BPM Amazon Dash 


  1. 1.
    The first international workshop on smart edge computing and networking 2017 - welcome and committeees. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 1–2 (2017)Google Scholar
  2. 2.
  3. 3.
    Warren, A.: Amazon Echo: The Ultimate Amazon Echo User Guide 2016 Become An Alexa and Echo Expert Now! CreateSpace Independent Publishing Platform, USA (2016)Google Scholar
  4. 4.
    Alexa Skills Kit - Build for Voice with Amazon. Accessed 1 Jun 2017
  5. 5.
    Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bandyopadhyay, D., Sen, J.: Internet of Things: applications and challenges in technology and standardization. Wirel. Pers. Commun. 58(1), 49–69 (2011)CrossRefGoogle Scholar
  7. 7.
    Houy, C., Fettke, P., Loos, P., van der Aalst, W.M.P., Krogstie, J.: BPM-in-the-Large – towards a higher level of abstraction in business process management. In: Janssen, M., Lamersdorf, W., Pries-Heje, J., Rosemann, M. (eds.) EGES/GISP -2010. IFIP AICT, vol. 334, pp. 233–244. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  8. 8.
    Meyer, S., Sperner, K., Magerkurth, C., Pasquier, J.: Towards modeling real-world aware business processes. In: Proceedings of the Second International Workshop on Web of Things, p. 8 (2011)Google Scholar
  9. 9.
    Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing A. MIS Q. 26(2), 494–508 (2002)Google Scholar
  10. 10.
    Inman, J.J., McAlister, L., Hoyer, W.D.: Promotion signal: proxy for a price cut? J. Consum. Res. 17(1), 74–81 (1990)CrossRefGoogle Scholar
  11. 11.
    Laran, J., Tsiros, M.: An investigation of the effectiveness of uncertainty in marketing promotions involving free gifts. J. Mark. 77(2), 112–123 (2013)CrossRefGoogle Scholar
  12. 12.
    Dahlén, M., Lange, F., Smith, T.: Marketing Communications: A Brand Narrative Approach. John Wiley & Sons, London (2010)Google Scholar
  13. 13.
    Koski, N.: Impulse buying on the internet: encouraging and discouraging factors. Front. E-Bus. Res. 4, 23–35 (2004)Google Scholar
  14. 14.
    Jarvenpaa, S.L., Todd, P.A.: Is there a future for retailing on the Internet. Electron. Mark. Consum. 1(12), 139–154 (1997)Google Scholar
  15. 15.
    Burke, R.R.: Do you see what I see? The future of virtual shopping. J. Acad. Mark. Sci. 25(4), 352–360 (1997)CrossRefGoogle Scholar
  16. 16.
    Zhou, Y.C., Liu, X.P., Wang, X.N., Xue, L., Liang, X.X., Liang, S.: Business process centric Platform-as-a-Service model and technologies for cloud enabled industry solutions. In: 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD), pp. 534–537 (2010)Google Scholar
  17. 17.
    Lennon, S.J., Kim, M., Johnson, K.K., Jolly, L.D., Damhorst, M.L., Jasper, C.R.: A longitudinal look at rural consumer adoption of online shopping. Psychol. Mark. 24(4), 375–401 (2007)CrossRefGoogle Scholar
  18. 18.
    Wong, K.K.-K.: Partial Least Squares Structural Equation Modeling (PLS-SEM) techniques using SmartPLS. Mark. Bull. 24, 1–32 (2013)Google Scholar
  19. 19.
    Hooper, D., Coughlan, J., Mullen, M.R.: Structural equation modelling: guidelines for determining model fit. Electron. J. Bus. Res. Methods 6, 53–60 (2008)Google Scholar
  20. 20.
    Ringle, C.M., Wende, S., Will, A.: SmartPLS 2.0 (beta), Hamburg, Germany (2005)Google Scholar
  21. 21.
    Chin, W.W.: The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 295(2), 295–336 (1998)Google Scholar
  22. 22.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  23. 23.
    Kranz, M., Holleis, P., Schmidt, A.: Embedded interaction: interacting with the Internet of Things. IEEE Internet Comput. 14(2), 46–53 (2010)CrossRefGoogle Scholar
  24. 24.
    Zimmermann, A., Schmidt, R., Sandkuhl, K., Wissotzki, M., Jugel, D., Möhring, M.: Digital enterprise architecture - transformation for the Internet of Things. In: IEEE International Enterprise Distributed Object Computing Conference (EDOC 2015), Workshop Proceedings, Adelaide (2015)Google Scholar
  25. 25.
    Zhou, L., Dai, L., Zhang, D.: Online shopping acceptance model-a critical survey of consumer factors in online shopping. J. Electron. Commer. Res. 8(1), 41 (2007)Google Scholar
  26. 26.
    Parasuraman, A., Grewal, D., Krishnan, R.: Marketing Research. Cengage Learning, Boston (2006)Google Scholar
  27. 27.
    Ilie, V., Van Slyke, C., Green, G., Lou, H.: Gender differences in perceptions and use of communication technologies: a diffusion of innovation approach. Inf. Resour. Manage J. 18(3), 16–31 (2005)CrossRefGoogle Scholar
  28. 28.
    Riquelme, H.E., Rios, R.E.: The moderating effect of gender in the adoption of mobile banking. Int. J. Bank Mark. 28(5), 328–341 (2010)CrossRefGoogle Scholar
  29. 29.
    Ahuja, M.K., Thatcher, J.B.: Moving beyond intentions and toward the theory of trying: effects of work environment and gender on post-adoption information technology use. MIS Q. 29(3), 427–459 (2005)CrossRefGoogle Scholar
  30. 30.
    Recker, J.: Scientific Research in Information Systems: A Beginner’s Guide. Springer, Heidelberg (2012)Google Scholar
  31. 31.
    Schmitz, C.: LimeSurvey: an open source survey tool. LimeSurvey Project Hamburg, Germany (2012).
  32. 32.
    Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 140, 1–55 (1932)Google Scholar
  33. 33.
    Urbach, N., Ahlemann, F.: Structural equation modeling in information systems research using partial least squares. JITTA J. Inf. Technol. Theor. Appl. 11(2), 5–40 (2010)Google Scholar
  34. 34.
    Wetzels, M., Odekerken-Schröder, G., Van Oppen, C.: Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Q. 33, 177–195 (2009)CrossRefGoogle Scholar
  35. 35.
    Münstermann, B., Eckhardt, A., Weitzel, T.: The performance impact of business process standardization: an empirical evaluation of the recruitment process. Bus. Process Manag. J. 16(1), 29–56 (2010)CrossRefGoogle Scholar
  36. 36.
    Becker, J., et al.: A framework for efficient information modeling - guidelines for retail enterprises. In: Proceedings of the Third Informs Conference on Information Systems and Technology, pp. 442–448 (1998)Google Scholar
  37. 37.
    Silvestro, R., Westley, C.: Challenging the paradigm of the process enterprise: a case-study analysis of BPR implementation. Omega 30(3), 215–225 (2002)CrossRefGoogle Scholar
  38. 38.
    Keller, B., Schmidt, R., Möhring, M., Härting, R.-C., Zimmermann, A.: Social-data driven sales processes in local clothing retail stores. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 305–315. Springer, Cham (2016). CrossRefGoogle Scholar
  39. 39.
    Lefebvre, L.A., et al.: RFID as an enabler of B-to-B e-Commerce and its impact on business processes: a pilot study of a supply chain in the retail industry. In: Proceedings of the 39th Annual Hawaii International Conference on System Sciences, HICSS 2006. IEEE (2006)Google Scholar
  40. 40.
    Becker, J., Kugeler, M., Rosemann, M. (eds.): Process Management: A Guide for the Design of Business Processes. Springer, Heidelberg (2013)Google Scholar
  41. 41.
    Schmidt, R., Möhring, M., Zimmermann, A., Härting, R.-C., Keller, B.: Potentials of image mining for business process management. In: Czarnowski, I., Caballero, A.M., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2016, Part II. SIST, vol. 57, pp. 429–440. Springer, Cham (2016). CrossRefGoogle Scholar
  42. 42.
    Houston, M.B., Bettencourt, L.A., Wenger, S.: The relationship between waiting in a service queue and evaluations of service quality: a field theory perspective. Psychol. Mark. 15(8), 735–753 (1998)CrossRefGoogle Scholar
  43. 43.
    Nah, F.F.-H.: A study on tolerable waiting time: how long are web users willing to wait? Behav. Inf. Technol. 23(3), 153–163 (2004)CrossRefGoogle Scholar
  44. 44.
    Hoxmeier, J.A., Dicesare, C.: System response time and user satisfaction: an experimental study of browser-based applications. In: AMCIS 2000 Proceedings (2000)Google Scholar
  45. 45.
    Laudon, K.C., Laudon, J.P.: Management Information Systems: Managing the Digital Firm, vol. 8. Prentice-Hall, Upper Saddle River (2006)zbMATHGoogle Scholar
  46. 46.
    Chesbrough, H., Spohrer, J.: A research manifesto for services science. Commun. ACM 49(7), 35–40 (2006)CrossRefGoogle Scholar
  47. 47.
    Harrison-Broninski, K.: Human Interactions: The Heart and Soul of Business Process Management: how People Really Work and how They Can be Helpful to Work Better. Meghan-Kiffer Press, Tampa (2005)Google Scholar
  48. 48.
    Schmidt, R., Möhring, M., Keller, B.: Customer relationship management in a public cloud environment–key influencing factors for European enterprises. In: Proceedings of the 50th Hawaii International Conference on System Sciences (2017)Google Scholar
  49. 49.
    Schmidt, R., et al.: Benefits from using Bitcoin: empirical evidence from a European country. Int. J. Serv. Sci. Manag. Eng. Technol. (IJSSMET) 7(4), 48–62 (2016)CrossRefGoogle Scholar
  50. 50.
    Möhring, M., et al.: Präventives retourenmanagement im eCommerce. HMD Prax. der Wirtsch. 50(5), 66–75 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Michael Möhring
    • 1
    Email author
  • Barbara Keller
    • 1
  • Rainer Schmidt
    • 1
  • Lara Pietzsch
    • 2
  • Leila Karich
    • 2
  • Carolin Berhalter
    • 2
  • Karsten Kilian
    • 2
  1. 1.Munich University of Applied SciencesMunichGermany
  2. 2.University of Applied Sciences Würzburg-SchweinfurtWürzburgGermany

Personalised recommendations