An Habit Is a Process: A BPM-Based Approach for Smart Spaces

  • Daniele Sora
  • Francesco Leotta
  • Massimo MecellaEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 308)


Among the most important decisions to be taken in modeling human habits in smart spaces there is the choice of the technique to be adopted: models can be expressed by using a multitude of formalisms, all with differently proven effectiveness. However, a crucial aspect, often underestimated in its importance, is the readability of the model: it influences the possibility of validating the model itself by human experts. Possible solutions for the readability issue are offered by Business Process Modeling techniques, designed for process analysis: to apply process automation and mining techniques on a version of the sensor log preprocessed in order to translate raw sensor measurements into human actions. The paper also presents some hints of how the proposed method can be employed to automatically extract models to be reused for ambient intelligence, analysing the challenges in this research field.


  1. 1.
    van der Aalst, W.M.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases (VLDB), vol. 1215, pp. 487–499 (1994)Google Scholar
  3. 3.
    Augusto, J.C., Liu, J., McCullagh, P., Wang, H., Yang, J.B.: Management of uncertainty and spatio-temporal aspects for monitoring and diagnosis in a smart home. Int. J. Comput. Intell. Syst. 1(4), 361–378 (2008)CrossRefGoogle Scholar
  4. 4.
    Augusto, J.C., Nugent, C.D.: The use of temporal reasoning and management of complex events in smart homes. In: ECAI 2014Google Scholar
  5. 5.
    Aztiria, A., Augusto, J.C., Basagoiti, R., Izaguirre, A., Cook, D.J.: Discovering frequent user-environment interactions in intelligent environments. Pers. Ubiquit. Comput. 16(1), 91–103 (2012)CrossRefGoogle Scholar
  6. 6.
    Aztiria, A., Izaguirre, A., Basagoiti, R., Augusto, J.C., Cook, D.J.: Automatic modeling of frequent user behaviours in intelligent environments. In: 2010 6th International Conference on Intelligent Environments (IE), pp. 7–12. IEEE (2010)Google Scholar
  7. 7.
    Aztiria, A., Izaguirre, A., Basagoiti, R., Augusto, J.C., Cook, D.J.: Discovering frequent sets of actions in intelligent environments. In: 2009 5th International Conference on Intelligent Environments (IE), pp. 153–160. IEEE (2009)Google Scholar
  8. 8.
    Baier, T., Mendling, J.: Bridging abstraction layers in process mining by automated matching of events and activities. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 17–32. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  9. 9.
    Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environments. Knowl. Eng. Rev. 18(03), 197–207 (2003)CrossRefGoogle Scholar
  10. 10.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.: Fundamentals of Business Process Management. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  11. 11.
    García-Bañuelos, L., Dumas, M., La Rosa, M., De Weerdt, J., Ekanayake, C.C.: Controlled automated discovery of collections of business process models. Inf. Syst. 46, 85–101 (2014)CrossRefGoogle Scholar
  12. 12.
    Gottfried, B., Guesgen, H.W., Hübner, S.: Spatiotemporal reasoning for smart homes. In: Augusto, J.C., Nugent, C.D. (eds.) Designing Smart Homes. LNCS (LNAI), vol. 4008, pp. 16–34. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  13. 13.
    Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for building context-aware services. J. Netw. Comput. Appl. 28(1), 1–18 (2005)CrossRefGoogle Scholar
  14. 14.
    Helaoui, R., Riboni, D., Stuckenschmidt, H.: A probabilistic ontological framework for the recognition of multilevel human activities. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 345–354. ACM (2013)Google Scholar
  15. 15.
    Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 593–604 (2007)Google Scholar
  16. 16.
    Leotta, F., Mecella, M., Mendling, J.: Applying process mining to smart spaces: perspectives and research challenges. In: Persson, A., Stirna, J. (eds.) CAiSE 2015. LNBIP, vol. 215, pp. 298–304. Springer, Cham (2015). CrossRefGoogle Scholar
  17. 17.
    Leotta, F., Mecella, M., Spinelli, G., Sora, D.: Pipelining user trajectory analysis and visual process maps for habit mining. In: 14th Intl IEEE Conference on Ubiquitous Intelligence & Computing (UIC), 4–8 August 2017. (to appear)Google Scholar
  18. 18.
    Loke, S.W.: Logic programming for context-aware pervasive computing: language support, characterizing situations, and integration with the web. In: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 44–50 (2004)Google Scholar
  19. 19.
    Loke, S.W.: Incremental awareness and compositionality: a design philosophy for context-aware pervasive systems. Pervasive Mob. Comput. 6(2), 239–253 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ranganathan, A., McGrath, R., Campbell, R., Mickunas, M.: Use of ontologies in a pervasive computing environment. Knowl. Eng. Rev. 18(03), 209–220 (2003)CrossRefGoogle Scholar
  21. 21.
    Rashidi, P., Cook, D.J.: COM: a method for mining and monitoring human activity patterns in home-based health monitoring systems. ACM Trans. Intell. Syst. Technol. (TIST) 4(4), 64 (2013)Google Scholar
  22. 22.
    Riboni, D., Bettini, C.: Context-aware activity recognition through a combination of ontological and statistical reasoning. In: 2009 International IEEE Conference Ubiquitous Intelligence & Computing (UIC), pp. 39–53 (2009)Google Scholar
  23. 23.
    Riboni, D., Sztyler, T., Civitarese, G., Stuckenschmidt, H.: Unsupervised recognition of interleaved activities of daily living through ontological and probabilistic reasoning. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1–12. ACM (2016)Google Scholar
  24. 24.
    Ye, J., Coyle, L., Dobson, S., Nixon, P.: Ontology-based models in pervasive computing systems. Knowl. Eng. Rev. 22(4), 315–347 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Daniele Sora
    • 1
  • Francesco Leotta
    • 1
  • Massimo Mecella
    • 1
    Email author
  1. 1. Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio RubertiSapienza Università di RomaRomeItaly

Personalised recommendations