Semantically-Oriented Business Process Visualization for a Data and Constraint-Based Workflow Approach

  • Eric RietzkeEmail author
  • Ralph Bergmann
  • Norbert Kuhn
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 308)


This paper introduces a novel approach which unifies a data-centric and a constraint-based workflow principle to support the requirements of knowledge intensive business processes. By the integration of a knowledge-based system, process definition and execution relevant data coincide on an ontology-based semantic net. The data, mainly driving the process, can be delivered by different sources or can be the result of an inference step by the underlying ontology. In such a case, AI technology plays an active role during the process execution and result in a division of labor with human actors. This paper presents a concept for a semantically-oriented process visualization for the introduced unified approach.


  1. 1.
    Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for business processes. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on Business Process Modeling, pp. 503–531. IGI Global Publishing, Hershey (2009)CrossRefGoogle Scholar
  2. 2.
    Bobrik, R., Reichert, M., Bauer, T.: View-based process visualization. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  3. 3.
    Bruno, G.: A data-flow language for business process models. Procedia Technol. 16, 128–137 (2014)CrossRefGoogle Scholar
  4. 4.
    Card, S., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)Google Scholar
  5. 5.
    Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business operations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)Google Scholar
  6. 6.
    Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteristics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1), 29–57 (2015)CrossRefGoogle Scholar
  7. 7.
    Grumbach, L., Rietzke, E., Schwinn, M., Bergmann, R., Kuhn, N.: SEMAFLEX-semantic integration of flexible workflow and document management. In: CEUR Workshop Proceedings: LWDA, Potsdam, vol. 1670, pp. 43–50 (2016)Google Scholar
  8. 8.
    Kolb, J., Reichert, M.: A flexible approach for abstracting and personalizing large business process models. Appl. Comput. Rev. 13(1), 6–17 (2013)CrossRefGoogle Scholar
  9. 9.
    Kuenzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object-aware process management. J. Softw. Maint. Evol. 23(4), 205–244 (2011)CrossRefGoogle Scholar
  10. 10.
    Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex data dependencies in business processes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 171–186. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  11. 11.
    Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-structured processes. In: Proceedings - IEEE International Enterprise Distributed Object Computing Workshop, EDOC, pp. 287–298 (2007)Google Scholar
  12. 12.
    Sauer, T., Minor, M., Bergmann, R.: Inverse workflows for supporting agile business process management. In: Proceedings 6th Conference Knowledge Management, vol. 182, pp. 194–203 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of Applied Science TrierTrierGermany
  2. 2.University of TrierTrierGermany

Personalised recommendations