Diagnosing Hybrid Dynamical Systems Using Max-Plus Algebraic Methods

  • Gregory Provan


This article uses an algebraic framework for hybrid systems diagnosis. We define hybrid systems using a class of discrete-event systems, max-plus linear discrete-event systems, which define synchronization without concurrency or selection. While these hybrid systems models are non-linear in a conventional algebra, they are linear in the max-plus algebra, thereby enabling linear-time inference. We use an observer-based framework for monitoring and diagnosing max-plus diagnostics models, and further improve computational efficiency by searching over only the most-likely space of behaviours. We illustrate our approach using a multi-tank benchmark example.



The paper has been supported by SFI grants 12/RC/2289 and 13/RC/2094.


  1. 1.
    Arogeti, S. A., Wang, D., & Low, C. B. (2008). Mode tracking and FDI of hybrid systems. In 10th International Conference on Control, Automation, Robotics and Vision (ICARCV) (pp. 892–897). New York: IEEE.Google Scholar
  2. 2.
    Baccelli, F., Cohen, G., Olsder, G. J., & Quadrat, J.-P. (1992). Synchronization and linearity: An algebra for discrete event systems. Chichester: Wiley.zbMATHGoogle Scholar
  3. 3.
    Basile, F. (2014). Overview of fault diagnosis methods based on Petri net models. In 2014 European Control Conference (ECC) (pp. 2636–2642). IEEE.Google Scholar
  4. 4.
    Bayoudh, M., & Travé-Massuyès, L. (2014). Diagnosability analysis of hybrid systems cast in a discrete-event framework. Discrete Event Dynamic Systems, 24(3), 309–338.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bemporad, A., & Morari, M. (1999). Robust model predictive control: A survey. In Robustness in identification and control (pp. 207–226). London: Springer.CrossRefGoogle Scholar
  6. 6.
    Boukra, R., Lahaye, S., & Boimond, J.-L. (2015). New representations for (max,+) automata with applications to performance evaluation and control of discrete event systems. Discrete Event Dynamic Systems, 25(1–2), 295–322.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Butkovic, P. (2010). Max-linear systems: Theory and algorithms. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  8. 8.
    Cuninghame-Green, R. A. (1979). Minimax algebra. Lecture notes in economics and mathematical systems (Vol. 166). Berlin: Springer.zbMATHGoogle Scholar
  9. 9.
    De Schutter, B., Heemels, W. P. M. H., & Bemporad, A. (2002). On the equivalence of linear complementarity problems. Operations Research Letters, 30(4), 211–222.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gaubert, S. (1990). An algebraic method for optimizing resources in timed event graphs. In Analysis and optimization of systems (pp. 957–966). Berlin: Springer.Google Scholar
  11. 11.
    Gaubert, S. (1995). Performance evaluation of (max,+) automata. IEEE Transactions on Automatic Control, 40(12), 2014–2025.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gaubert, S. (1997). Methods and applications of (max,+) linear algebra. In Annual symposium on theoretical aspects of computer science (pp. 261–282). Berlin: Springer.Google Scholar
  13. 13.
    Hardouin, L., Shang, Y., Maia, C. A., & Cottenceau, B. (2017). Observer-based controllers for max-plus linear systems. IEEE Transactions on Automatic Control, 62(5), 2153–2165.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Heemels, W., De Schutter, B., & Bemporad, A. (2001). Equivalence of hybrid dynamical models. Automatica, 37(7), 1085–1091.CrossRefzbMATHGoogle Scholar
  15. 15.
    Hillion, H. P., & Proth, J.-M. (1989). Performance evaluation of job-shop systems using timed event-graphs. IEEE Transactions on Automatic Control, 34(1), 3–9.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Holloway, L. E., Krogh, B. H., & Giua, A. (1997). A survey of Petri net methods for controlled discrete event systems. Discrete Event Dynamic Systems, 7(2), 151–190.CrossRefzbMATHGoogle Scholar
  17. 17.
    Koutsoukos, X., Kurien, J., & Zhao, F. (2002). Monitoring and diagnosis of hybrid systems using particle filtering methods. In International Symposium on Mathematical Theory of Networks and Systems.Google Scholar
  18. 18.
    Leenaerts, D., & Van Bokhoven, W. M. G. (2013). Piecewise linear modeling and analysis. New York: Springer Science & Business Media.zbMATHGoogle Scholar
  19. 19.
    Lerner, U., Parr, R., Koller, D., Biswas, G. (2000). Bayesian fault detection and diagnosis in dynamic systems. In AAAI/IAAI (pp. 531–537).Google Scholar
  20. 20.
    Manger, R. (2008). A catalogue of useful composite semirings for solving path problems in graphs. In Proceedings of the 11th International Conference on Operational Research (KOI 2006).Google Scholar
  21. 21.
    Provan, G. (2016). A general characterization of model-based diagnosis. In Proceedings of the 22nd European Conference on Artificial Intelligence. IOS Press.Google Scholar
  22. 22.
    Sahner, R. A., Trivedi, K., & Puliafito, A. (2012). Performance and reliability analysis of computer systems: An example-based approach using the SHARPE software package. Berlin: Springer Science & Business Media.zbMATHGoogle Scholar
  23. 23.
    Sontag, E. (April 1981). Nonlinear regulation: The piecewise linear approach. IEEE Transactions on Automatic Control, 26(2), 346–358.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Van den Boom, T. J. J., & De Schutter, B. (2004). Model predictive control for perturbed max-plus-linear systems: A stochastic approach. International Journal of Control, 77(3), 302–309.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    van den Boom, T. J. J., & De Schutter, B. (2006). Modelling and control of discrete event systems using switching max-plus-linear systems. Control Engineering Practice, 14(10), 1199–1211.CrossRefGoogle Scholar
  26. 26.
    van den Boom, T. J. J., & De Schutter, B. (2012). Modeling and control of switching max-plus-linear systems with random and deterministic switching. Discrete Event Dynamic Systems, 22(3), 293–332.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Witczak, M. (2007) Modelling and estimation strategies for fault diagnosis of non-linear systems: From analytical to soft computing approaches (Vol. 354). Berlin: Springer Science & Business Media.zbMATHGoogle Scholar
  28. 28.
    Zaytoon, J., & Lafortune, S. (2013). Overview of fault diagnosis methods for discrete event systems. Annual Reviews in Control, 37(2), 308–320.CrossRefGoogle Scholar
  29. 29.
    Zhao, F., Koutsoukos, X., Haussecker, H., Reich, J., & Cheung, P. (2005). Monitoring and fault diagnosis of hybrid systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6), 1225–1240.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer Science, University College CorkCorkIreland

Personalised recommendations