Skip to main content

Correlation Diagrams: An Intuitive Approach to Interactions in Quantum Hall Systems

  • Chapter
  • First Online:
Book cover Solid State Physics

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 4037 Accesses

Abstract

In this chapter, we study correlations resulting from Coulomb interactions in fractional quantum Hall systems. Our objective is to use correlation diagrams to gain new insights into correlations in strongly interacting many-body systems. We introduce correlation diagrams to guide in the selection of the correlation functions correlation function caused by interactions. Electrons are represented by points located at positions \(z_{i}\) in the complex plane, and there are correlation lines connecting pairs of electrons. A correlation line connecting particles i and j represents a correlation factor (cf) \(z_{ij}=z_{i}-z_{j}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Method of Quantum Field Theory in Statistical Physics, (Prentice-Hall, Englewood Cliffs, N.J., 1963).

  2. 2.

    D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

  3. 3.

    See, for example, S. Gasiorowicz, Quantum Physics, Third ed. (John Wiley & Sons, Hoboken, N.J., 2003).

  4. 4.

    R. B.Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

  5. 5.

    G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).

  6. 6.

    M. Greiter, X.-G. Wen, and F. Wilczek, Phys. Rev. Lett. 66, 3205 (1991); Nucl. Phys. B 374, 507 (1992).

  7. 7.

    A. Cappelli, L. S. Georgiev, and I. T. Todorov Proc. of Supersymmetries and Quantum Symmetries (SQS’99, July 1999, Dubna) Ed. by E. Ivanov, S. Krivonos, and A. Pashev (JINR) p. 235 (2000).

  8. 8.

    J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).

  9. 9.

    F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983); F. D. M. Haldane and E. H. Rezayi, Phys. Rev. Lett. 54, 237 (1985).

  10. 10.

    G. Fano, F. Ortolani, and E. Colombo, Phys. Rev. B 34, 2670 (1986).

  11. 11.

    There is a one to one correspondence between N electrons on a plane described by coordinates \((r,\phi )\) and N electrons on a sphere described by \((l, l_z)\). For the plane, the z-component of angular momentum takes on the values \(m=0, 1, \ldots , N_\phi \) and the total z component of angular momentum is \(M=\sum _{i=1}^N m_i\) where \(m_i\) is the z-component of angular momentum of a particle \((i=1, 2, \ldots , N)\). M is the sum of the relative angular momentum \(M_\mathrm{R}\) and the center of mass angular momentum \(M_{\mathrm{CM}}\). On a sphere, the z-component of the single particle angular momentum is written as \(l_z\), and \(|l_z| \le l\), where l is the angular momentum in the shell (or Landau level). The total angular momentum L is determined by addition of the angular momenta of N Fermions, each with angular momentum l. N electron states are designated by \(|L, L_z,\alpha \rangle \), where \(\alpha \) is used to label different multiplets with the same value of L. It is apparent that \(M=Nl+L_z\), and one can show that \(M_\mathrm{R}=Nl-L\) and \(M_\mathrm{CM}=L+L_z\). Therefore, for a state of angular momentum \(L=0\), \(M_\mathrm{R}\) must be equal to Nl. In general the value of L for a given correlation function is given by the equation \(L=Nl -K_{\mathcal F}-K_{\mathcal G}\), where \(K_{\mathcal F}=N(N-1)/2\) is the number of cf lines appearing in the Fermi function \(\mathcal F\) and \(K_{\mathcal G}\) is the number of cf lines in the correlation function \(\mathcal G\).

  12. 12.

    X. M. Chen and J. J. Quinn, Solid State Commun. 92, 865 (1994).

  13. 13.

    J. J. Quinn, R. E. Wooten, and J. H. Macek, Proc. of the 21st Int. Conf. on High Magnetic Fields in Semiconductor Physics (Panama City, Florida, 2014) p. 44.

  14. 14.

    See, for example, S. B. Mulay, J. J. Quinn, and M. A. Shattuck, Proceedings of 18th International Conference on Recent Progress in Many-Body Theories (MBT18) IOP Publishing; J. of Physics: Conference Series 702, 012007 (2016).

  15. 15.

    J. J. Quinn, A. Wojs, and K. S. Yi, J. Korean Phys. Soc. 45, S491–S495 (2004).

  16. 16.

    J. J. Quinn, A. Wojs, K. S. Yi, and G. Simion, Physics Reports 481, 29 (2009).

  17. 17.

    P. Sitko, K. S. Yi, and J. J. Quinn, Phys. Rev. B 56, 12417 (1997); P. Sitko, S. N. Yi, K. S. Yi, and J. J. Quinn, Phys. Rev. Lett. 76, 3396 (1996).

  18. 18.

    The final sections of this chapter followed very closely the review Electron Correlations in Strongly Interacting Systems by J. J. Quinn and G. E. Simion in New Trends in Statistical Physics, edited by A. Macias and L. Dagdug (World Scientific Publishing Co., Singapore, 2010). The interested reader should read this work for a more complete discussion.

  19. 19.

    S.-Y. Lee, V. W. Scarola, and J. K. Jain, Phys. Rev. Lett. 87, 256803 (2001);S.-Y. Lee, V. W. Scarola, and J. Jain, Phys. Rev. B. 66, 085336 (2002).

  20. 20.

    A. Wojs, D. Wodzinski, and J. J. Quinn, Phys. Rev. B. 74, 035315 (2006).

  21. 21.

    See, for example, A. Wojs and J. J. Quinn, Phys. Rev. B. 75, 085318 (2007); S. He, F. C. Zhang, X. C. Xie, and S. Das Sarma, Phys. Rev. B. 42, 11376 (1990).

  22. 22.

    W. Pan, H. L. Stormer, D. C. Tsui, L. N. Pfeier, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 90, 016801 (2003).

  23. 23.

    A. Wojs and J. J. Quinn, Solid State Commun. 108, 493 (1998).

  24. 24.

    We make use of an operator identities, which states that for N fermions in a shell of angular momentum l, \(\hat{L}^2+N(N-2)\hat{l}^2 =\sum _{\left\langle i, j\right\rangle }(\hat{l}_i+\hat{l}_j)^2\). Here \(\hat{L}^2\) and \(\hat{l}^2\) are the squares of the angular momentum operators, and the sum is over all pairs \(\left\langle i, j\right\rangle \).

  25. 25.

    A. de Shalit and I. Talmi, Nuclear Shell Theory (Academic Press, New York, 1963).

  26. 26.

    A. T. Benjamin, J. J. Quinn, J. J. Quinn, and A. Wojs J. of Combinatorial Theory A 95(2) 390 (2001).

  27. 27.

    John J. Quinn and Jennifer J. Quinn, Phys. Rev. B 68, 153310 (2003).

  28. 28.

    G. E. Simion and J. J. Quinn, Physica E 41, 1 (2008).

  29. 29.

    A. Wojs, Phys. Rev. B 63, 235322 (2001).

  30. 30.

    A. Wojs and J. J. Quinn, Phys. Rev. B 61, 2846 (2000).

  31. 31.

    K. Park and J. K. Jain, Phys. Rev. B 62, R13274 (2000).

  32. 32.

    I. Szlufarska, A. Wojs, and J. J. Quinn, Phys. Rev. B 64, 165318 (2001).

  33. 33.

    X. C. Xie, S. Das Sarma, and S. He, Phys. Rev. B. 47, 15942 (1993).

  34. 34.

    See, for example, J. H. Smet, Nature 422, 391 (2003); M. Goerbig, P. Lederer, and C. M. Smith, Physica E. 34, 57 (2006); M. O. Goerbig, P. Lederer, and C. M. Smith, Phys. Rev. B. 69, 155324, (2004); A. Lopez and E. Fradkin, Phys. Rev. B. 69, 155322 (2004); C.-C. Chang and J. K. Jain, Phys. Rev. Lett. 92, 196806 (2004).

  35. 35.

    R. H. Morf, Phys. Rev. Lett. 80, 1505 (1998); R. H. Morf, N. d’Ambrumenil, and S. Das Sarma, Phys. Rev. B. 66, 075408 (2002).

  36. 36.

    J. J. Quinn, A. Wojs, and K.-S. Yi, Physics Letters A 318, 152 (2003).

  37. 37.

    J. J. Quinn, A. Wojs, K.-S. Yi, and J. J. Quinn in The electron liquid paradigm in condensed matter physics, pp. 469-497, (IOS Press, Amsterdam, 2004).

  38. 38.

    See the Springer’s series of monographs Mathematical Physics and Applications. These rigorous proofs would be of more interest to mathematicians than to the physicists for whom this book in intended. An extended review by Mulay, Shattuck, and Quinn on ‘An intuitive approach to correlations in many-Fermion systems’ is expected to appear in 2018 in Springer’s Monograph Series.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Quinn .

Appendices

Problems

17.1

Consider a system of N fermions and prove an identity given by

$$ {\hat{L}}^2+N(N-2)\hat{l}^2-\sum _{\left\langle i, j\right\rangle }\hat{L}_{ij}^2=0. $$

Here \(\hat{L}\) is the total angular momentum operator, \(\hat{L}_{ij}=\hat{l}_i+\hat{l}_j\), and the sum is over all pairs. Hint: One can write out the definitions of \({\hat{L}}^2\) and \(\sum _{\left\langle i, j\right\rangle }{\hat{L}_{ij}}^2\) and eliminate \(\hat{l}_i \cdot \hat{l}_j\) from the pair of equations.

17.2

Demonstrate that the expectation value of square of the pair angular momentum \(L_{ij}\) summed over all pairs is totally independent of the multiplicity \(\alpha \) and depends only on the total angular momentum L.

17.3

Derive the two sum rules involving \(\mathcal {P}_{L\alpha }(L_{12})\), i.e., the probability that the multiplet \(|l^N;N\alpha \rangle \) contains pairs having pair angular momentum \(L_{12}\):

$$ \frac{1}{2}N(N-1)\sum _{L_{12}} L_{12}(L_{12}+1)\mathcal {P}_{L\alpha }(L_{12}) = L(L+1)+N(N-2)l(l+1) $$

and

$$ \sum _{L_{12}} \mathcal {P}_{L\alpha }(L_{12}) = 1. $$

17.4

Show that the energy of the multiplet \(|l^N;L\alpha \rangle \) is given, for harmonic pseudopotential \(V_\mathrm{H}(L_{12})\), by

$$ E_\alpha (L) = N\left[ \frac{1}{2}(N-1)A+B(N-2)l(l+1)\right] +BL(L+1). $$

Summary

Here we study correlations resulting from Coulomb interactions in fractional quantum Hall systems, and correlation diagrams are introduced to guide in the selection of the correlation functions caused by interactions.

It is established that a harmonic pseudopotential does not cause correlations (i.e. it does not lift the degeneracy of different multiplets with the same value of the total angular momentum L). The pseudopotential \(V_{n}(L_{12})\) for electrons in a partially filled \(n{\text {th}}\) Landau level (LLn) is evaluated and the interaction energies of quasielectrons and of quasiholes are determined. The use of partitions and permutation symmetry is introduced to construct correlation diagrams and correlation functions causing the most important correlations. Comparison of the energy spectra of an (N, 2l) electron system with the corresponding \((N_{\text {QE}}, 2l_{\text {QE}})\) quasielectron system shows that the latter system gives a very reasonable approximation to the low energy states of the former. Because of the form \(V_{1}(L_{12})\) for the LL0 there can be no Laughlin correlated states for \(2/5>\nu >1/3\), and that states like \(\nu =4/11\) must involve pairing of the electrons and a much weaker interaction between these pairs.

Conditions on the correlation function \(\mathcal {G}\{z_{ij}\}\) are imposed in terms of the number of pairs \(n_{j}\) in the correlation diagram containing j correlation factors, which greatly limit the allowed choices of the total number \(K_{\mathcal {G}}\) of correlation factors in \(\mathcal {G}\{z_{ij}\}\). In the numerical diagonalizations, the intuitive model wave function is in reasonable qualitative agreement with numerical experiment. This demonstrates that the novel intuitive approach to fermion correlations does give new insight into understanding many fermion interactions in fractional quantum Hall effect – the paradigm for strongly interacting systems.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quinn, J.J., Yi, KS. (2018). Correlation Diagrams: An Intuitive Approach to Interactions in Quantum Hall Systems. In: Solid State Physics. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-73999-1_17

Download citation

Publish with us

Policies and ethics