Skip to main content

The Use of Spray Drying in the Production of Inorganic-Organic Hybrid Materials with Defined Porous Structure

  • Conference paper
  • First Online:
Practical Aspects of Chemical Engineering

Abstract

Chitin and lignin are important, widespread, natural biopolymers and they have gained much attention in various branches of science. Recently, due to the unique properties of these biopolymers, special attention has been paid to the synthesis of various chitin-based and lignin-based inorganic-organic hybrids with defined porous structure parameters. This chapter reviews the use of spray drying as a useful technique for controlled synthesis of inorganic-organic functional materials, with chitin-silica and lignin-silica as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso B, Belamie E (2010) Chitin-silica nanocomposites by self-assembly. Angew Chemie Int Ed 49:8201–8204

    Article  CAS  Google Scholar 

  • Anitha A, Sowmya S, Kumar P et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  CAS  Google Scholar 

  • Belotti S, Rossi A, Colombo P et al (2015) Spray-dried amikacin sulphate powder for inhalation in cystic fibrosis patients: the role of ethanol in particle formation. Eur J Pharm Biopharm 93:165–172

    Article  CAS  Google Scholar 

  • Bittner B, Kissel T (1999) Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres. J Microencapsul 16:325–341

    Article  CAS  Google Scholar 

  • Bula K, Jesionowski T, Krysztafkiewicz A et al (2007) The effect of filler surface modification and processing conditions on distribution behaviour of silica nanofillers in polyesters. Colloid Polym Sci 285:1267–1273

    Article  CAS  Google Scholar 

  • Cal K, Sollohub K (2010) Spray drying technique. I: hardware and process parameters. J Pharm Sci 99:575–586

    Article  CAS  Google Scholar 

  • Carne-Sanchez A, Imaz I, Cano-Sarabia M et al (2013) A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nat Chem 5:203–211

    Article  CAS  Google Scholar 

  • Cheow WS, Li S, Hadinoto K (2010) Spray drying formulation of hollow spherical aggregates of silica nanoparticles by experimental design. Chem Eng Res Des 88:673–685

    Article  CAS  Google Scholar 

  • Chew JH, Woo MW, Chen XD et al (2015) Mapping the shrinkage behavior of skim milk droplets during convective drying. Dry Technol 33:1101–1113

    Article  CAS  Google Scholar 

  • Cho Y-S (2016) Fabrication of hollow or macroporous silica particles by spray drying of colloidal dispersion. J Dispers Sci Technol 37:23–33

    Article  CAS  Google Scholar 

  • Dimitri MS (1974) US Patent 3,808,192, 30 Apr 1974

    Google Scholar 

  • Ding F, Deng H, Du Y et al (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 6:9477–9493

    Article  CAS  Google Scholar 

  • Doolittle AK (1931) US Patent 1,973,051, 9 Jul 1931

    Google Scholar 

  • Dotto GL, Cunha JM, Calgaro CO, Tanabe EH, Bertuol DA (2015) Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption. J Hazard Mater 15:29–36

    Google Scholar 

  • Dziadas M, Nowacka M, Jesionowski T et al (2011) Comparison of silica gel modified with three different functional groups with C-18 and styrene–divinylbenzene adsorbents for the analysis of selected volatile flavor compounds. Anal Chim Acta 699:66–72

    Article  CAS  Google Scholar 

  • El Mansouri NE, Salvadó J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crops Prod 24:8–16

    Article  Google Scholar 

  • Fan Y, Saito T, Isogai A (2008a) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromol 9:192–198

    Article  CAS  Google Scholar 

  • Fan Y, Saito T, Isogai A (2008b) Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions. Biomacromol 9:1919–1923

    Article  CAS  Google Scholar 

  • Figueiredo P, Lintinen K, Kiriazis A et al (2017) In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials 121:97–108

    Article  CAS  Google Scholar 

  • Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4:657–665

    Article  Google Scholar 

  • Heath L, Zhu L, Thielemans W (2013) Chitin nanowhisker aerogels. Chemsuschem 6:537–544

    Article  CAS  Google Scholar 

  • Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308–3318

    Article  CAS  Google Scholar 

  • Iskandar F, Lenggoro IW, Xia B et al (2001a) Functional nanostructured silica powders derived from colloidal suspensions by sol spraying. J Nanoparticle Res 3:263–270

    Article  CAS  Google Scholar 

  • Iskandar F, Mikrajuddin, Okuyama K (2001b) In situ production of spherical silica particles containing self-organized mesopores. Nano Lett 1:231–234

    Article  CAS  Google Scholar 

  • Iskandar F, Mikrajuddin, Okuyama K (2002) Controllability of pore size and porosity on self-organized porous silica particles. Nano Lett 2:389–392

    Article  CAS  Google Scholar 

  • Jaskulski M, Wawrzyniak P, Zbiciński I (2015) CFD model of particle agglomeration in spray drying. Dry Technol 33:1971–1980

    Article  CAS  Google Scholar 

  • Jesionowski T, Krysztafkiewicz A (1996) Production of a highly dispersed sodium-aluminium silicate to be used as a white pigment or as a polymer filler. Pigment Resin Technol 25:4–14

    Article  CAS  Google Scholar 

  • Jesionowski T, Krysztafkiewicz A, Żurawska J et al (2009) Novel precipitated silicas—an active filler of synthetic rubber. J Mater Sci 44:759–769

    Article  CAS  Google Scholar 

  • Jin J, Lee D, Im HG et al (2016) Green electronics: Chitin nanofiber transparent paper for flexible green electronics. Adv Mater 28:5169–5175

    Article  CAS  Google Scholar 

  • Katta S, Gauvin WH (1975) Some fundamental aspects of spray drying. AIChE J 21:143–152

    Article  CAS  Google Scholar 

  • Kemp IC, Hartwig T, Herdman R et al (2016) Spray drying with a two-fluid nozzle to produce fine particles: Atomization, scale-up, and modeling. Dry Technol 34:1243–1252

    Article  CAS  Google Scholar 

  • Keshani S, Daud WRW, Nourouzi MM et al (2015) Spray drying: An overview on wall deposition, process and modeling. J Food Eng 146:152–162

    Article  Google Scholar 

  • Klapiszewski Ł, Jesionowski T (2017) Novel lignin-based materials as products for various applications. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials, polymeric composites. Wiley, New Jersey, pp 519–554

    Chapter  Google Scholar 

  • Klapiszewski Ł, Bartczak P, Wysokowski M et al (2015) Silica conjugated with kraft lignin and its use as a novel “green” sorbent for hazardous metal ions removal. Chem Eng J 260:684–693

    Article  CAS  Google Scholar 

  • Klapiszewski Ł, Siwińska-Stefańska K, Kołodyńska D (2017) Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(II). Chem Eng J 314:169–181

    Article  CAS  Google Scholar 

  • Kowalski SJ (2007) Drying of porous materials. Springer, New York

    Book  Google Scholar 

  • Leong KH (1987) Morphological control of particles generated from the evaporation of solution droplets: experiment. J Aerosol Sci 18:525–552

    Article  CAS  Google Scholar 

  • Li X, Anton N, Arpagaus C et al (2010) Nanoparticles by spray drying using innovative new technology: the büchi nano spray dryer B-90. J Control Release 147:304–310

    Article  CAS  Google Scholar 

  • Lievonen M, Valle-Delgado JJ, Mattinen M-L et al (2016) A simple process for lignin nanoparticle preparation. Green Chem 18:1416–1422

    Article  CAS  Google Scholar 

  • Lintingre E, Lequeux F, Talini L et al (2016) Control of particle morphology in the spray drying of colloidal suspensions. Soft Matter 12:7435–7444

    Article  CAS  Google Scholar 

  • Mezhericher M, Levy A, Borde I (2010) Spray drying modelling based on advanced droplet drying kinetics. Chem Eng Process 49:1205–1213

    Article  CAS  Google Scholar 

  • Morganti P, Muzzarelli C (2013) US Patent 8,552,164 B2, 8 Oct 2013

    Google Scholar 

  • Mutsenko VV, Gryshkov O, Lauterboeck L et al (2017) Novel chitin scaffolds derived from marine sponge Ianthella basta for tissue engineering approaches based on human mesenchymal stromal cells: biocompatibility and cryopreservation. Int J Biol Macromol 1–11

    Google Scholar 

  • Muzzarelli R, Mehtedi M, Mattioli-Belmonte M (2014) Emerging biomedical applications of nano-chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources. Mar Drugs 12:5468–5502

    Article  CAS  Google Scholar 

  • Nata IF, Wang SSS, Wu TM et al (2012) β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohydr Polym 90:1509–1514

    Article  CAS  Google Scholar 

  • Oh DX, Cha YJ, Nguyen H-L et al (2016) Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions. Sci Rep 6:23245–23250

    Article  Google Scholar 

  • Osińska M, Walkowiak M, Zalewska A et al (2009) Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes. J Membr Sci 326:582–588

    Article  Google Scholar 

  • Percy SR (1872) US Patent 125,406, 9 Apr 1872

    Google Scholar 

  • Pilarska A, Markiewicz E, Ciesielczyk F et al (2011) The influence of spray drying on the dispersive and physicochemical properties of magnesium oxide. Dry Technol 29:1210–1218

    Article  CAS  Google Scholar 

  • Retuert J, Nuñez A, Martínez F et al (1997) Synthesis of polymeric organic-inorganic hybrid materials. Partially deacetylated chitin-silica hybrid. Macromol Rapid Commun 18:163–167

    Article  CAS  Google Scholar 

  • Richter AP, Bharti B, Armstrong HB et al (2016) Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties. Langmuir 32:6468–6477

    Article  CAS  Google Scholar 

  • Rosenberg M, Kopelman IJ, Talmon YJ (1990) Factors affecting retention in spray-drying microencapsulation of volatile materials. J Agric Food Chem 38:1288–1294

    Article  CAS  Google Scholar 

  • Smolyakov G, Pruvost S, Cardoso L et al (2017) PeakForce QNM AFM study of chitin-silica hybrid films. Carbohydr Polym 166:139–145

    Article  CAS  Google Scholar 

  • Trandafir DL, Turcu RVF, Simon S (2010) Structural study of spray dried silica-germanate nanoparticles. Mater Sci Eng B 172:68–71

    Article  CAS  Google Scholar 

  • Vehring R (2008) Pharmaceutical particle engineering via spray drying. Pharm Res 25:999–1022

    Article  CAS  Google Scholar 

  • Vehring R, Foss WR, Lechuga-Ballesteros D (2007) Particle formation in spray drying. J Aerosol Sci 38:728–746

    Article  CAS  Google Scholar 

  • Vicente J, Pinto J, Menezes J et al (2013) Fundamental analysis of particle formation in spray drying. Powder Technol 247:1–7

    Article  CAS  Google Scholar 

  • Villanueva ME, Salinas A, Díaz LE et al (2015) Chitin nanowhiskers as alternative antimicrobial controlled release carriers. New J Chem 39:614–620

    Article  CAS  Google Scholar 

  • Walker WJ, Reed JS, Verma SK (1999) Influence of slurry parameters on the characteristics of spray-dried granules. J Am Ceram Soc 82:1711–1719

    Article  CAS  Google Scholar 

  • Walton DE (2002) Spray-dried particle morphologies. Dev Chem Eng Miner Process 10:323–348

    Article  Google Scholar 

  • Warych J (2004) Aparatura chemiczna i procesowa. OWPW, Warszawa

    Google Scholar 

  • Wysokowski M, Petrenko I, Stelling A et al (2015) Poriferan chitin as a versatile template for extreme biomimetics. Polymers 7:235–265

    Article  Google Scholar 

  • Zalewska A, Walkowiak M, Niedzicki L et al (2010) Study of the interfacial stability of PVdF/HFP gel electrolytes with sub-micro- and nano-sized surface-modified silicas. Electrochim Acta 55:1308–1313

    Article  CAS  Google Scholar 

  • Zellmer S, Garnweitner G, Breinlinger T et al (2015) Hierarchical structure formation of nanoparticulate spray-dried composite aggregates. ACS Nano 9:10749–10757

    Article  CAS  Google Scholar 

  • Zeng JB, He YS, Li SL et al (2012) Chitin whiskers: an overview. Biomacromol 13:1–11

    Article  CAS  Google Scholar 

  • Zhang X, Guan J, Ni R et al (2014) Preparation and solidification of redispersible nanosuspensions. J Pharm Sci 103:2166–2176

    Article  CAS  Google Scholar 

  • Zhu H, Luo W, Ciesielski PN et al (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by PUT research grant no. 03/32/DSPB/0706.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teofil Jesionowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jesionowski, T., Michalska, B., Wysokowski, M., Klapiszewski, Ł. (2018). The Use of Spray Drying in the Production of Inorganic-Organic Hybrid Materials with Defined Porous Structure. In: Ochowiak, M., Woziwodzki, S., Doligalski, M., Mitkowski, P. (eds) Practical Aspects of Chemical Engineering. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73978-6_12

Download citation

Publish with us

Policies and ethics