Advertisement

Homeostasis from a Time-Series Perspective: An Intuitive Interpretation of the Variability of Physiological Variables

  • Ruben FossionEmail author
  • Jean Pierre J. Fossion
  • Ana Leonor Rivera
  • Octavio A. Lecona
  • Juan C. Toledo-Roy
  • Karla P. García-Pelagio
  • Lorena García-Iglesias
  • Bruno Estañol
Chapter

Abstract

Homeostasis implies the approximate constancy of specific regulated variables, where the independence of the internal from the external environment is ensured by adaptive physiological responses carried out by other so-called effector variables. The loss of homeostasis is the basis to understand chronic-degenerative disease and age-associated frailty. Technological advances presently allow to monitor a large variety of physiological variables in a non-invasive and continuous way and the statistics of the resulting physiological time series is thought to reflect the dynamics of the underlying control mechanisms. Recent years have seen an increased interest in the variability and/or complexity analysis of physiological time series with possible applications in pathophysiology. However, a general understanding is lacking for which variables variability is an indicator of good health (e.g., heart rate variability) and when on the contrary variability implies a risk factor (e.g., blood pressure variability). In the present contribution, we argue that in optimal conditions of youth and health regulated variables and effector variables necessarily exhibit very different statistics, with small and large variances, respectively, and that under adverse circumstances such as ageing and/or chronic-degenerative disease these statistics degenerate in opposite directions, i.e. towards an increased variability in the case of regulated variables and towards a decreased variability for effector variables. We demonstrate this hypothesis for a simple mathematical model of a thermostat, and for blood pressure and body temperature homeostasis for healthy controls and patients with metabolic disease, and suggest that this scheme may explain the general phenomenology of physiological variables of homeostatic regulatory mechanisms.

Keywords

Homeostasis Physiological regulation Control theory Control systems Continuous monitoring Time series Early-warning signals Complexity Fractal physiology Variability Heart rate variability HRV Blood pressure variability BPV Body temperature 

Notes

Acknowledgements

We acknowledge the financial support from the Dirección General de Asuntos del Personal Académico (DGAPA) of the Universidad Nacional Autónoma de México (UNAM) grants IN106215, IV100116 and IA105017, from the Consejo Nacional de Ciencia y Tecnología (CONACYT) grants Fronteras 2015-2-1093, Fronteras 2016-01-2277 and CB-2011-01-167441, and the Newton Advanced Fellowship awarded to R.F. by the Academy of Medical Sciences through the UK Government’s Newton Fund programme. We are grateful to Alejandro Frank and Christopher Stephens for fruitful discussions.

References

  1. 1.
    Modell H, Cliff W, Michael J, McFarland J, Wenderoth MP, Wright A (2015) A physiologist’s view of homeostasis. Adv Physiol Educ 39:259–266CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bernard C (1957) Introduction à l’étude de la Médecine Expérimentale. J.B. Baillière et Fils, Paris; 1865 (English Translation by Greene HC, Dover, New York, NY, 1957)Google Scholar
  3. 3.
    Gross CG (2009) Three before their time: neuroscientists whose ideas were ignored by their contemporaries. Exp Brain Res 192:321–34CrossRefPubMedGoogle Scholar
  4. 4.
    Cannon WB (1963) The wisdom of the body, revised and enlarged edition (first published 1939). W.W. Norton & Co, New York, NYGoogle Scholar
  5. 5.
    Wiener N (1961) Cybernetics or the control and communication in the animal and the machine, 2nd edn. MIT Press, CambridgeGoogle Scholar
  6. 6.
    Schneck DJ (1987) Feedback control and the concept of homeostasis. Math Model 9:889–900CrossRefGoogle Scholar
  7. 7.
    Ramsay DS, Woods SC (2014) Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol Rev 121(2):225–247CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mangum CP, Towle DW (1977) Physiological adaptation to unstable environments. Am Sci 65:67–75PubMedGoogle Scholar
  9. 9.
    Moore-Ede MC (1986) Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Physiol 250(5 Pt 2):R737–R752PubMedGoogle Scholar
  10. 10.
    Bauman, DE (2000) Regulation of nutrient partitioning during lactation: homeostasis and homeorhesis revisited. In: Cronjé P, Boomker EA (eds) Ruminant physiology: digestion, metabolism, growth, and reproduction. CABI Pub, Wallingford, Oxon, pp 311–328CrossRefGoogle Scholar
  11. 11.
    Bauman DE, Currie WB (1980) Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J Dairy Sci 63(9):1514–1529CrossRefPubMedGoogle Scholar
  12. 12.
    Waddington CH (1957) The strategy of the genes; a discussion of some aspects of theoretical biology. Allen & Unwin, LondonGoogle Scholar
  13. 13.
    Waddington, CH (1968) Towards a theoretical biology; an IUBS symposium (International Union of Biological Sciences), vol. 1. Edinburgh University Press, Edinburgh (prolegomena)Google Scholar
  14. 14.
    Nicolaidis S (2011) Metabolic and humoral mechanisms of feeding and genesis of the ATP/ADP/AMP concept. Physiol Behav 104(1):8–14CrossRefPubMedGoogle Scholar
  15. 15.
    Soodak H, Iberall A (1978) Homeokinetics: a physical science for complex systems. Science 201(4356):579–582CrossRefPubMedGoogle Scholar
  16. 16.
    Mrosovsky N (1990) Rheostasis: the physiology of change. Oxford University Press, New YorkGoogle Scholar
  17. 17.
    Yates FE (1982) The 10th J. A. F. Stevenson memorial lecture. Outline of a physical theory of physiological systems. Can J Physiol Pharmacol 60(3):217–248Google Scholar
  18. 18.
    Yates FE (1994) Order and complexity in dynamical-systems - homeodynamics as a generalized mechanics for biology. Math Comput Model 19(6–8):49–74CrossRefGoogle Scholar
  19. 19.
    Yates FE (2008) Homeokinetics/homeodynamics: a physical heuristic for life and complexity. Ecol Psychol 20(2):148–179CrossRefGoogle Scholar
  20. 20.
    Chilliard Y (1986) Bibliographic review: quantitative variations and metabolism of lipids in adipose tissue and the liver during the gestation-lactation cycle. 1. In the rat. Reprod Nutr Dev 26(5A):1057–1103CrossRefPubMedGoogle Scholar
  21. 21.
    Chilliard Y, Ferlay A, Faulconnier Y, Bonnet M, Rouel J, Bocquier F (2000) Adipose tissue metabolism and its role in adaptations to undernutrition in ruminants. Proc Nutr Soc 59(1):127–134CrossRefPubMedGoogle Scholar
  22. 22.
    Kuenzel WJ, Beck MM, Teruyama R (1999) Neural sites and pathways regulating food intake in birds: a comparative analysis to mammalian systems. J Exp Zool 283(4–5):348–364CrossRefPubMedGoogle Scholar
  23. 23.
    Selye H (1973) Homeostasis and heterostasis. Perspect Biol Med 16(3):441–445CrossRefPubMedGoogle Scholar
  24. 24.
    Berntson GG, Cacioppo JT (2000) From homeostasis to allodynamic regulation. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology, vol 2. Cambridge University Press, Cambridge, pp 459–481Google Scholar
  25. 25.
    Berntson GG, Cacioppo JT (2007) Integrative physiology: homeostasis, allostasis, and the orchestration of systemic physiology. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology, vol 3. Cambridge University Press, Cambridge, pp 433–452CrossRefGoogle Scholar
  26. 26.
    Sterling P (2004) Principles of allostasis: optimal design, predictive regulation, pathophysiology, and rational therapeutics. In: Schulkin J (ed) Allostasis, homeostasis and the costs of physiological adaptation. Cambridge University Press, New York, pp 17–64CrossRefGoogle Scholar
  27. 27.
    Sterling P (2012) Allostasis: a model of predictive regulation. Physiol Behav 106(1):5–15CrossRefPubMedGoogle Scholar
  28. 28.
    Sterling P, Eyer J (1988) Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason JT (eds) Handbook of life stress, cognition, and health. Wiley, Chichester, pp 629–649Google Scholar
  29. 29.
    Carpenter RHS (2004) Homeostasis: a plea for a unified approach. Adv Physiol Educ 28:S180–S187CrossRefGoogle Scholar
  30. 30.
    Day TA (2005) Defining stress as a prelude to mapping its neurocircuitry: no help from allostasis. Prog Neuro-Psychopharmacol Biol Psychiatry 29:1195–1200CrossRefGoogle Scholar
  31. 31.
    Goldberger AL, Rigney DR, West BJ (1992) Chaos and fractals in human physiology. Sci Am 262:34–41Google Scholar
  32. 32.
    Seely AJE, Macklem PT (2004) Complex systems and the technology of variability analysis. Crit Care 8:R367CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chaudhary B, Dasti S, Park Y, Brown T, Davis H, Akhtar B (1998) Hour-to-hour variability of oxygen saturation in sleep apnea. Chest 113(3):719–722CrossRefPubMedGoogle Scholar
  34. 34.
    Churruca J, Vigil L, Luna E, Ruiz-Galiana J, Varela M (2008) The route to diabetes: loss of complexity in the glycemic profile from health through the metabolic syndrome to type 2 diabetes. Diabetes Metab Syndr Obes 1:3–11CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gardner JD, Young W, Sloan S, Robinson M, Miner PB Jr (2005) The fractal nature of human gastro-oesophageal reflux. Aliment Pharmacol Ther 22:823–830CrossRefPubMedGoogle Scholar
  36. 36.
    Garrett DD, Samanez-Larkin GR, MacDonald SWS, Lindenberger U, McIntosh AR, Gradye CL (2013) Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci Biobehav Rev 37:610–624CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hausdorff JM (2005) Gait variability: methods, modeling and meaning. J NeuroEng Rehabil 2:19CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Malik M et al (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381CrossRefGoogle Scholar
  39. 39.
    Parati G, Ochoa JE, Lombardi C, Bilo G (2013) Assessment and management of blood-pressure variability. Nat Rev Cardiol 10:143–155CrossRefPubMedGoogle Scholar
  40. 40.
    Papaioannou V, Pneumatikos I (2012) Fractal physiology, breath-to-breath variability and respiratory diseases: an introduction to complex systems theory application in pulmonary and critical care medicine. In: Andrade AO, Alves Pereira A, Naves ELM, Soares AB (eds) Practical applications in biomedical engineering, Chap 3. ISBN 978-953-51-0924-2, Published: January 9, 2013 under CC BY 3.0 licenseGoogle Scholar
  41. 41.
    Varela M, Calvo M, Chana M, Gomez-Mestre I, Asensio R, Galdos P (2005) Clinical implications of temperature curve complexity in critically ill patients. Crit Care Med 33(12):2764–2771CrossRefPubMedGoogle Scholar
  42. 42.
    Fossion R, Stephens CR, García-Pelagio DP, García-Iglesias L (2017) Data mining and time-series analysis as two complementary approaches to study body temperature in obesity. In: Proceedings of DH’17, London, UK, July 02–05, 2017, p 5Google Scholar
  43. 43.
    Kelly G (2006) Body temperature variability (part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging. Altern Med Rev 11(4):278–293PubMedGoogle Scholar
  44. 44.
    Kelly G (2006) Body temperature variability (part 2): masking influences of body temperature variability and a review of body temperature variability in disease. Altern Med Rev 12(1):49–62Google Scholar
  45. 45.
    Visnovcova Z, Mestanika M, Galac M, Mestanikova A, Tonhajzerova I (2016) The complexity of electrodermal activity is altered in mental cognitive stressors. Comput Biol Med 79:123–129CrossRefPubMedGoogle Scholar
  46. 46.
    Yamagata M, Ikezoe T, Kamiya M, Masaki M, Ichihashi N (2017) Correlation between movement complexity during static standing and balance function in institutionalized older adults. Clin Interv Aging 12:499–503CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hu K, Ivanov PCh, Chen Z, Hilton MF, Stanley HE, Shea SA (2009) Non-random fluctuations and multi-scale dynamics regulation of human activity. Proc Natl Acad Sci USA 106(8):2490–2494CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ivanov PCh, Hu K, Hilton MF, Shea SA, Stanley HE (2007) Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics. Proc Natl Acad Sci USA 104(52):20702–20707CrossRefPubMedGoogle Scholar
  49. 49.
    Hu K, Van Someren EJW, Shea SA, Scheer FAJL (2009) Reduction of scale invariance of activity fluctuations with aging and Alzheimer’s disease: Involvement of the circadian pacemaker. Proc Natl Acad Sci USA 106(8):2490–2494CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fossion R, Rivera AL, Toledo-Roy JC, Ellis J, Angelova A (2017) Multiscale adaptive analysis of circadian rhythms and intradaily variability: application to actigraphy time series in acute insomnia subjects. PLoS One 12(7):e0181762.  https://doi.org/10.1371/journal.pone.0181762 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fossion R, Sáenz A, Zapata-Fonseca L (accepted) On the stability and adaptability of human physiology: Gaussians meet heavy-tailed distributions. INTERdisciplina (CEIICH-UNAM)Google Scholar
  52. 52.
    Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton, NJGoogle Scholar
  53. 53.
    Anderson A, Semmelroth D (2015) Statistics for big data for dummies. Wiley, HobokenGoogle Scholar
  54. 54.
    Lipsitz LA, Goldberger AL (1992) Loss of complexity and aging: potential applications of fractals and chaos theory to senescence. JAMA 267:1806–1809CrossRefPubMedGoogle Scholar
  55. 55.
    Goldberger AL (1992) Non-linear dynamics for clinicians: chaos theory, fractals and complexity at the bedside. Lancet 347:1312–1314CrossRefGoogle Scholar
  56. 56.
    Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PCh, Peng C-K, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A 99(supp.1) 2466–2472Google Scholar
  57. 57.
    Goldberger AL (2006) Complex systems. Proc Am Thorac Soc 3:467–472CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    West BJ (2006) Where medicine went wrong: rediscovering the path to complexity. World Scientific, SingaporeCrossRefGoogle Scholar
  59. 59.
    West BJ (2010) Homeostasis and Gauss statistics: barriers to understanding natural variability. J Eval Clin Pract 16:403–408CrossRefPubMedGoogle Scholar
  60. 60.
    West BJ (2013) Fractal physiology and chaos in medicine, 2nd edn. World Scientific, SingaporeCrossRefGoogle Scholar
  61. 61.
    Scheffer M (2001) Catastrophic shifts in ecosystems. Nature 413:591–596CrossRefPubMedGoogle Scholar
  62. 62.
    Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V et al (2009) Early-warning signals for critical transitions. Nature 461:53–59CrossRefPubMedGoogle Scholar
  63. 63.
    Carpenter SR, Cole JJ, Pace ML, Batt R, Brock WA, Cline T et al (2011) Early warnings of regime shifts: a whole-ecosystem experiment. Science 332:1079–1082CrossRefPubMedGoogle Scholar
  64. 64.
    Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V et al (2012) Anticipating critical transitions. Science 338:344–348CrossRefPubMedGoogle Scholar
  65. 65.
    Scheffer M (2009) Critical transitions in nature and society. Princeton University Press, Princeton, NJGoogle Scholar
  66. 66.
    Ashby WR (1960) Design for a brain: the origin of adaptive behaviour, 2nd edn. Chapman & Hall, LondonCrossRefGoogle Scholar
  67. 67.
    Billman GE (2013) Homeostasis: the dynamic self-regulatory process that maintains health and buffers against disease. In: Sturmberg JP, Martin CM (eds) Handbook of systems and complexity in health, Chap. 10. Springer, New York, pp 159–170Google Scholar
  68. 68.
    Schelling TC (1978) Thermostats, lemons and other families of models. In: Micromotives and macrobehavior, Chap. 3. W. W. Norton & Company, LondonGoogle Scholar
  69. 69.
    Kitts JA (2005) Replication of Schelling’s (1978) thermostat model in MatLab and R, webpage on modelling of social dynamics, University of Massachusetts, retrieved from http://socdynamics.org/id4.html on 21 May 2017
  70. 70.
    Rivera AL, Estañol B, Sentíes-Madrid H, Fossion R, Toledo-Roy JC, Mendoza-Temis J et al (2016) Heart rate and systolic blood pressure variability in the time domain in patients with recent and long-standing diabetes mellitus. PLoS One 11(2):e0148378.  https://doi.org/10.1371/journal.pone.0148378 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Rivera AL, Estañol B, Fossion R, Toledo-Roy JC, Callejas-Rojas JA, Gien-López JA et al (2016) Loss of breathing modulation of heart rate variability in patients with recent and long standing diabetes mellitus type II. PLoS One 11(11):e0165904CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Schaffer F, McCraty R, Zerr CL (2014) A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Physiol 5:article number 1040Google Scholar
  73. 73.
    Dawson TJ (1973) Primitive mammals. In: Whittow GC (ed) Comparative physiology of thermoregulation. Special aspects of thermoregulation. Chap. 1, vol III. Academic Press, New York, pp 1–46Google Scholar
  74. 74.
    Gisolfi CV, Mora F (2000) The hot brain. MIT Press, CambridgeGoogle Scholar
  75. 75.
    Romanovsky AA, Almeida MC, Garami A, Steiner AA, Norman MH, Morrison SF et al (2009) The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev 61:228–261CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Schillaci G, Pucci G, Parati G (2011) Blood pressure variability: an additional target for antihypertensive treatment? Hypertension 58:133–135CrossRefPubMedGoogle Scholar
  77. 77.
    Heikens MJ, Gorbach AM, Eden HS, Savastano DM, Chen KY, Skarulis MC et al (2011) Core body temperature in obesity. Am J Clin Nutr 93:963–967CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Hynd PI, Czerwinski VH, McWhorter TJ (2014) Is propensity to obesity associated with the diurnal pattern of core body temperature? Int J Obes 38:231–235CrossRefGoogle Scholar
  79. 79.
    Grimaldi D, Provini F, Pierangeli G, Mazzella N, Zamboni G, Marchesini G et al (2015) Evidence of a diurnal thermogenic handicap in obesity. Chronobiol Int 32:299–302CrossRefPubMedGoogle Scholar
  80. 80.
    Seeley T (2002) When is self-organization used in biological systems? Biol Bull 202(3):314–318CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ruben Fossion
    • 1
    • 2
    Email author
  • Jean Pierre J. Fossion
    • 3
  • Ana Leonor Rivera
    • 1
    • 2
  • Octavio A. Lecona
    • 2
    • 4
  • Juan C. Toledo-Roy
    • 2
  • Karla P. García-Pelagio
    • 5
  • Lorena García-Iglesias
    • 6
  • Bruno Estañol
    • 2
    • 7
  1. 1.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Centro de Ciencias de la Complejidad (C3)Universidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Belgian Association of Medical Acupuncture (ABMA-BVGA)BrusselsBelgium
  4. 4.Maestría en Dinámica No Lineal y Sistemas ComplejosUniversidad Autónoma de la Ciudad de MéxicoMexico CityMexico
  5. 5.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  6. 6.Posgrado en Ciencias FísicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  7. 7.Laboratorio de Neurofisiología Clínica, Departamento de Neurología y PsiquiatríaInstituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”Mexico CityMexico

Personalised recommendations