Advertisement

Making Domain-Specific Beliefs Explicit for Prospective Teachers

An Example of Using Original Sources
  • Susanne Spies
  • Ingo Witzke
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

The implicit effects of using history of mathematics in teachers’ education on the individual beliefs of prospective mathematics teachers are widely discussed. However historical texts may also play an important role in making different mathematical worldviews and domain-specific beliefs explicit, as we discuss in this chapter. For this purpose, after sketching some connecting points between the history of mathematics on the one hand and individual beliefs of mathematics on the other and the short presentation of results of an empirical study on domain-specific beliefs of school calculus, we present an example from prospective teachers’ education at the University of Siegen: Within a course on subject matter didactics of calculus a historical source is used to initiate discussions on students’ beliefs.

Keywords

Prospective mathematics teachers History of mathematics Mathematical worldviews Domain-specific beliefs Calculus 

References

  1. Allmendinger, H., & Spies, S. (2015). Alte Bekannte aus persönlicher Sicht. Quadratische Gleichungen ästhetisch reflektiert. mathematiklehren, 193, 24–31.Google Scholar
  2. Allmendinger, H., Nickel, G., & Spies, S. (2015). Original sources in teachers training—Possible effects and experiences. In É. Barbin, U. T. Jankvist, & T. H. Kjeldsen (Eds.), History and epistemology in mathematics education: Proceedings of ESU 7 (pp. 551–564). Copenhagen: Danish School of Education, Aarhus University.Google Scholar
  3. Arcavi, A., & Isoda, M. (2007). Learning to listen: From historical sources to classroom practice. Educational Studies in Mathematics, 66, 111–129.CrossRefGoogle Scholar
  4. Bachelard, G. (1991). The formation of the scientific mind (M. McAllester Jones, Trans.). Manchester: Clinamen.Google Scholar
  5. Balzer, W., Moulines, C. U., & Sneed, J. D. (1987). An architectonic for science. The structuralist program. Dordrecht: Reidel.CrossRefGoogle Scholar
  6. Barbin, É. (1997). Histoire des Mathématiques: Pourquoi? Comment? Bulletin de l’Association Mathématiques du Québec, 37(1), 20–25.Google Scholar
  7. Bauer, L. (1990). Mathematikunterricht und Reflexion. mathematik lehren, 38, 6–9.Google Scholar
  8. Beutelspacher, A., Danckwerts, R., Nickel, G., Spies, S., & Wickel, G. (2011). Mathematik Neu Denken. Impulse für die Gymnasiallehrerbildung an Universitäten. Wiesbaden: Vieweg u. Teubner.Google Scholar
  9. Boyer, C. B. (1991). A history of mathematics (Revised by U. C. Merzbach). New York: Wiley.Google Scholar
  10. Brandt, D., Giersemehl, I., Greulich, G., Herd, E., Jörgens, T., Jürgens-Engel, T., et al. (2014). Lambacher Schweizer. Mathematik Einführungsphase NRW. Stuttgart: Ernst Klett Verlag.Google Scholar
  11. Burscheid, H. J., & Struve, H. (2010). Mathematikdidaktik in Rekonstruktionen. Ein Beitrag zu ihrer Grundlegung. Hildesheim: Franzbecker.Google Scholar
  12. Bütüner, S. Ö. (2015). Impact of using history of mathematics on students’ mathematics attitude: A meta-analysis study. European Journal of Science and Mathematics Education, 3(4), 337–349.Google Scholar
  13. Charalambous, C., Panaoura, A., & Philippou, G. (2009). Using the history of mathematics to induce changes in preservice teachers’ beliefs and attitudes: Insights from evaluating a teacher education program. Educational Studies in Mathematics, 71, 161–180.CrossRefGoogle Scholar
  14. Danckwerts, R., & Vogel, D. (2006). Analysis verständlich unterrichten. Wiesbaden: Elsevier.Google Scholar
  15. Fenaroli, G., Furinghetti, F., & Somaglia, A. (2014). Rethinking mathematical concepts with the lens of the history of mathematics: An experiment with prospective secondary teachers. Science & Education, 23, 185–203.CrossRefGoogle Scholar
  16. Forgasz, H., & Leder, G. (2008). Beliefs about mathematics and mathematics teaching. In P. Sullivan & T. Wood (Eds.), Knowledge and beliefs in mathematics teaching and teaching development (pp. 173–192). Rotterdam: Sense.Google Scholar
  17. Freudenthal, H. (1991). Revisiting mathematics education. China lectures. Dordrecht: Kluwer.Google Scholar
  18. Furinghetti, F. (2007). Teacher education through the history of mathematics. Educational Studies in Mathematics, 66, 131–143.CrossRefGoogle Scholar
  19. Grigutsch, S., Raatz, U., & Törner, G. (1998). Einstellungen gegenüber Mathematik bei Mathematiklehrern. Journal für Mathematik-Didaktik, 19(1), 3–45.CrossRefGoogle Scholar
  20. Gulikers, I., & Blom, K. (2002). ‘A historical angle’, a survey of recent literature on the use and value of history in geometrical education. Educational Studies in Mathematics, 47(1), 223–258.Google Scholar
  21. Hsieh, F.-J. (2000). Teachers’ teaching beliefs and their knowledge about the history of negative numbers. In W.-S. Horng & F.-L. Lin (Eds.), Proceedings of the HPM conference on history in mathematics education: Challenges for a new millennium—A satellite meeting of ICME-9 (pp. 88–97). Taipei: National Taiwan Normal University.Google Scholar
  22. Jahnke, H. N. (2006). Students working on their own ideas: Bernoulli’s lectures on the differential calculus in grade 11. In F. Furinghetti, H. N. Jahnke, & J. A. van Maanen (Eds.), Studying original sources in mathematics education (pp. 1313–1315). Oberwolfach: Mathematisches Forschungsinstitut Oberwolfach Report 22/2006.Google Scholar
  23. Jahnke, H. N., Arcavi, A., Barbin, E., Bekken, O., Furinghetti, F., El Idrissi, A., et al. (2000). The use of original sources in the mathematics classroom. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: The ICMI study. New ICMI Study Series (Vol. 6, pp. 291–328). Dordrecht: Kluwer.CrossRefGoogle Scholar
  24. Jankvist, U. T. (2015). Changing students’ images of “mathematics as a discipline.” Journal of Mathematical Behavior, 38, 41–56.CrossRefGoogle Scholar
  25. Kirsch, A. (1979). Ein Vorschlag zur visuellen Vermittlung einer Grundvorstellung vom Ableitungsbegriff. Der Mathematikunterricht, 25(3), 25–41.Google Scholar
  26. Kowalewski, G. (Ed.). (1914). Johannes Bernoulli: Die erste Integralrechnung (1691–1692). Aus dem Lateinischen übersetzt. Ostwalds Klassiker der exakten Wissenschaft. Leipzig: Verlag W. Engelmann.Google Scholar
  27. Lengnink, K. (2006). Reflected acting in mathematical learning processes. Zentralblatt für Didaktik der Mathematik, 38(4), 341–349.CrossRefGoogle Scholar
  28. Liljedahl, P., Rolka, K., & Roesken, B. (2007). Belief change as conceptual change. In D. Pitta-Pantazi & P. Philippou (Eds.), Proceedings of CERME 5 (pp. 278–287). Larnaca: University of Cyprus.Google Scholar
  29. Liu, P.-H. (2007). History as a platform for developing college students’ epistemological beliefs of mathematics. International Journal of Science and Mathematics Education, 7, 473–499.CrossRefGoogle Scholar
  30. Mayring, P. (2002). Einführung in die qualitative Sozialforschung. Weinheim: Beltz.Google Scholar
  31. Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 257–315). Charlotte, NC: Information Age.Google Scholar
  32. Schafheitlin, P. (Ed.). (1924). Die Differentialrechnung von Johann Bernoulli aus dem Jahre 1691/92. Ostwalds Klassiker der exakten Wissenschaft. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
  33. Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press.Google Scholar
  34. Sierpinska, A. (1994). Understanding in mathematics. London: The Falmer Press.Google Scholar
  35. Spies, S., & Witzke, I. (2017). Domain-specific beliefs zur Analysis von Lehrkräften. Beiträge zum Mathematikunterricht, 51, 929–932.Google Scholar
  36. Tall, D. (1980). Looking at graphs through infinitesimal microscopes, windows and telescopes. The Mathematical Gazette, 64(427), 22–49.CrossRefGoogle Scholar
  37. Tall, D. (2013). How humans learn to think mathematically. New York: Cambridge University Press.CrossRefGoogle Scholar
  38. Tietze, U.-P., Klika, M., & Wolpers, H. (Eds.). (2000). Mathematikunterricht in der Sekundartufe II. Band 1. Braunschweig: Springer.Google Scholar
  39. Wilson, M., & Cooney, T. (2002). Mathematics teacher change and development. In G. C. Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 127–147). Dordrecht: Kluwer.Google Scholar
  40. Witzke, I. (2009). Die Entwicklung des Leibnizschen Calculus. Eine Fallstudie zur Theorieentwicklung in der Mathematik. Hildesheim: Franzbecker.Google Scholar
  41. Witzke, I. (2014). Zur Problematik der empirisch-gegenständlichen Analysis des Mathematikunterrichtes. Der Mathematikunterricht, 60(2), 19–32.Google Scholar
  42. Witzke, I. (2015). Different understandings of mathematics. An epistemological approach to bridge the gap between school and university mathematics. In É. Barbin, U. T. Jankvist, & T. H. Kjeldsen (Eds.), History and Epistemology in Mathematics Education: Proceedings of the 7th ESU (pp. 304–322). Copenhagen: Danish School of Education, Aarhus University.Google Scholar
  43. Witzke, I., & Spies, S. (2016). Domain-specific beliefs of school calculus. Journal für Mathematik-Didaktik, 37(1), 131–161.CrossRefGoogle Scholar
  44. Witzke, I., Struve, H., Clark, K., & Stoffels, G. (2016). ÜberPro—A seminar constructed to confront the transition problem from school to university mathematics, based on epistemological and historical ideas of mathematics. MENON: Journal of Educational Research, 2nd Thematic Issue, 66–93.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Philosophy of Mathematics SectionUniversity of SiegenSiegenGermany
  2. 2.Department of Mathematics, Mathematics Education SectionUniversity of SiegenSiegenGermany

Personalised recommendations