Advertisement

An Empirical Approach to Monitoring Ship CO\(_2\) Emissions via Partial Least-Squares Regression

  • Antonio Lepore
  • Biagio Palumbo
  • Christian Capezza
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 227)

Abstract

Kyoto Protocol and competitiveness of the shipping market have been urging shipping companies to pay increasing attention to ship energy efficiency monitoring. At the same time, new monitoring data acquisition systems on modern ships have brought to a navigation data overload that have to be fully utilized via statistical methodologies. For this purpose, an empirical approach based on Partial Least-Squares regression is introduced by means of a real case study in order to give practical indications on CO2 emission control and for supporting prognosis of faults.

Keywords

Partial least-squares CO2 emission monitoring Prediction error Multivariate control chart 

Notes

Acknowledgements

The authors are grateful to the Grimaldi Group Energy Saving Department engineers Dario Bocchetti and Andrea D’Ambra.

References

  1. 1.
    Bocchetti, D., Lepore, A., Palumbo, B., Vitiello, L.: A statistical approach to ship fuel consumption monitoring. J. Ship Res. 59(3), 162–171 (2015)CrossRefGoogle Scholar
  2. 2.
    Corbett, J.J., Koehler, H.W.: Updated emissions from ocean shipping. J. Geophys. Res. 108(D20) (2003)Google Scholar
  3. 3.
    Council of European Union: Regulation (eu) 2015/757 of the European Parliament and of the Council of 29 april 2015 on the Monitoring, Reporting and Verification of Carbon Dioxide Emissions from Maritime Transport, and Amending Directive 2009/16/ec (2015)Google Scholar
  4. 4.
    Dayal, B., MacGregor, J.F., et al.: Improved PLS algorithms. J. Chemom. 11(1), 73–85 (1997)CrossRefGoogle Scholar
  5. 5.
    Duchesne, C., MacGregor, J.F.: Establishing multivariate specification regions for incoming materials. J. Qual. Technol. 36(1), 78–94 (2004)CrossRefGoogle Scholar
  6. 6.
    Eriksson, L., Kettaneh-Wold, N., Trygg, J., Wikström, C., Wold, S.: Multi-and Megavariate Data Analysis: Part I: Basic Principles and Applications. Umetrics Inc (2006)Google Scholar
  7. 7.
    Erto, P., Lepore, A., Palumbo, B., Vitiello, L.: A procedure for predicting and controlling the ship fuel consumption: its implementation and test. Qual. Reliab. Eng. Int. 31(7), 1177–1184 (2015)CrossRefGoogle Scholar
  8. 8.
    Geladi, P., Kowalski, B.R.: Partial least-squares regression: a tutorial. Anal. Chim. Acta 185, 1–17 (1986)CrossRefGoogle Scholar
  9. 9.
    Höskuldsson, A.: PLS regression methods. J. Chemom. 2(3), 211–228 (1988)CrossRefGoogle Scholar
  10. 10.
    IMO: Imo standard marine communication phrases (SMCP) (2000). http://www.segeln.co.at/media/pdf/smcp.pdf
  11. 11.
    IMO: IMO REF. T5/1.01 MEPC.1/Circ.684 17 Aug 2009 (2009)Google Scholar
  12. 12.
    ITTC: Dictionary of ship hydrodynamics. R. Inst. Nav. Archit. (2008)Google Scholar
  13. 13.
    Jackson, J.E.: A User’s Guide to Principal Components, vol. 587. Wiley (2005)Google Scholar
  14. 14.
    Jackson, J.E., Mudholkar, G.S.: Control procedures for residuals associated with principal component analysis. Technometrics 21(3), 341–349 (1979)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kourti, T., MacGregor, J.F.: Multivariate SPC methods for process and product monitoring. J. Qual. Technol. 28(4), 409–428 (1996)CrossRefGoogle Scholar
  16. 16.
    Lewis, E.V.: Principles of Naval Architecture, Second Revision, vol. II. Resistance Propulsion and Vibration, Society of Naval Architects and Marine Engineers (1988)Google Scholar
  17. 17.
    Nomikos, P., MacGregor, J.F.: Multi-way partial least squares in monitoring batch processes. Chemom. Intell. Lab Syst. 30(1), 97–108 (1995)Google Scholar
  18. 18.
    Nomikos, P., MacGregor, J.F.: Multivariate SPC charts for monitoring batch processes. Technometrics 37(1), 41–59 (1995)Google Scholar
  19. 19.
    Otto, M., Wegscheider, W.: Spectrophotometric multicomponent analysis applied to trace metal determinations. Anal. Chem. 57(1), 63–69 (1985)CrossRefGoogle Scholar
  20. 20.
    Rosipal, R., Krämer, N.: Overview and recent advances in partial least squares. In: Subspace, Latent Structure and Feature Selection, pp. 34–51. Springer (2006)Google Scholar
  21. 21.
    Ter Braak, C.J., de Jong, S.: The objective function of partial least squares regression. J. Chemom. 12(1), 41–54 (1998)CrossRefGoogle Scholar
  22. 22.
    Tracy, N.D., Young, J.C., Mason, R.L.: Multivariate control charts for individual observations. J. Qual. Technol. 24(2), 88–95 (1992)Google Scholar
  23. 23.
    Veness, C.: Calculate distance, bearing and more between two latitude/longitude points. Institute of Geophysics Texas (2007)Google Scholar
  24. 24.
    Wise, B.M., Gallagher, N.B.: The process chemometrics approach to process monitoring and fault detection. J. Process. Control 6(6), 329–348 (1996)CrossRefGoogle Scholar
  25. 25.
    Wold, S., Ruhe, A., Wold, H., Dunn III, W.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM. J. Sci. Comput. 5(3), 735–743 (1984)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Lepore
    • 1
  • Biagio Palumbo
    • 1
  • Christian Capezza
    • 1
  1. 1.University of Naples Federico IINaplesItaly

Personalised recommendations