Space-Time FPCA Clustering of Multidimensional Curves

  • Giada Adelfio
  • Francesca Di Salvo
  • Marcello Chiodi
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 227)


In this paper we focus on finding clusters of multidimensional curves with spatio-temporal structure, applying a variant of a k-means algorithm based on the principal component rotation of data. The main advantage of this approach is to combine the clustering functional analysis of the multidimensional data, with smoothing methods based on generalized additive models, that cope with both the spatial and the temporal variability, and with functional principal components that takes into account the dependency between the curves.


FPCA Clustering of multidimensional curves GAM Spatio-temporal pattern 


  1. 1.
    Adelfio, G., Chiodi, M., D’Alessandro, A., Luzio, D.: FPCA algorithm for waveform clustering. J. Commun. Comput. 8, 494–502 (2011)Google Scholar
  2. 2.
    Adelfio, G., Chiodi, M., D’Alessandro, A., Luzio, D., D’Anna, G., Mangano, G.: Simultaneous seismic wave clustering and registration. Comput. Geosci. 8(44), 6069 (2012)Google Scholar
  3. 3.
    Antoniadis, A., Paparoditis, E., Sapatinas, T.: A functional waveletkernel approach for time series prediction. J. R. Stat. Soci. Ser. B Stat. Methodol. 68(5), 837 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chiodi, M.: The clustering of longitudinal data when time series are short, Multivar. Data Anal. 445–453 (1989)Google Scholar
  5. 5.
    Delicado, P., Giraldo, R., Comas, C., Mateu, J.: Statistics for Spatial Functional Data: Some Recent Contributions, Environmetrics. Published Online in Wiley InterScience (2009).,
  6. 6.
    Di Salvo, F., Ruggieri, M., Plaia, A.: Functional principal component analysis for multivariate multidimensional environmental data. Env. Ecol. Stat. 22, 739–757 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Everitt, B.: Cluster Analysis. Wiley, New York (1993)zbMATHGoogle Scholar
  8. 8.
    Garca-Escudero, L.A., Gordaliza, A.: A proposal for robust curve clustering. J. Classif. 22, 185–201 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Giraldo, R., Delicado, P., Comas, C., Mateu, J.: Hierarchical clustering of spatially correlated functional data. Stat. Neerl. 66, 403–421 (2011)Google Scholar
  10. 10.
    Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman and Hall, London (1990)zbMATHGoogle Scholar
  11. 11.
    James, G.M., Sugar, C.A.: Clustering for sparsely sampled functional data. J. Am. Stat. Assoc. 98(462), 397–408 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jacques, J., Preda, C.: Functional data clustering: a survey. Advances in Data Analysis and Classification, vol. 8(3), pp. 231–255. Springer (2014)Google Scholar
  13. 13.
    Lee, D.J., Durban, M.: P-spline ANOVA-type interaction models for spatio-temporal smoothing. Stat. Model. 11(1), 49–69 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Luan, Y., Li, H.: Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 19(4), 474–82 (2003)CrossRefGoogle Scholar
  15. 15.
    R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2015).
  16. 16.
    Ramsay, J.O., Li, X.: Curve registration. J. R. Stat. Soc. Sect. B 60, 351–363 (1998)Google Scholar
  17. 17.
    Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer, New York (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    Romano, E., Balzanella, A., Verde, R.: Spatial variability clustering for spatially dependent functional data. Stat. Comput. (2016)Google Scholar
  19. 19.
    Romano, E., Mateu, J., Giraldo, R.: On the performance of two clustering methods for spatial functional data. Advances in Data Analysis and Classification, pp. 467–492. Springer (2015)Google Scholar
  20. 20.
    Sangalli, L.M., Secchi, P., Vantini, S., Veneziani, A.: A case study in explorative functional data analysis: geometrical features of the Internal Carotid Artery. J. Am. Stat. Assoc. 104(485), 37–48 (2009)Google Scholar
  21. 21.
    Secchi, C., Vantini, S., Vitelli, V.: Spatial Clustering of Functional Data (2011) Recent Advances in Functional Data Analysis and Related Topics, pp 283–289 (2011)Google Scholar
  22. 22.
    Serban, N., Wasserman, L.: CATS: cluster analysis by transformation and smoothing. J. Am. Stat. Assoc. 100(471), 990–999 (2005)CrossRefzbMATHGoogle Scholar
  23. 23.
    Tarpey, T., Kinateder, K.K.J.: Clustering functional data. J. Classif. 20, 3–114 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Vichi, M., Saporta, G.: Clustering and disjoint principal component analysis. Comput. Stat. Data Anal. (2008).
  25. 25.
    Wood, S.N.: Generalized Additive Models: an Introduction with R. Chapman & Hall (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Giada Adelfio
    • 1
  • Francesca Di Salvo
    • 1
  • Marcello Chiodi
    • 1
  1. 1.Dipartimento Scienze Economiche Aziendali e StatistichePalermoItaly

Personalised recommendations