Advertisement

Extended Realized GARCH Models

  • Richard Gerlach
  • Giuseppe Storti
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 227)

Abstract

We introduce a new class of models that extends the Realized GARCH models of Hansen et al. (J Appl Econom 27:877–906, 2012, [10]). Our model generalizes the original specification of Hansen et al. (J Appl Econom 27:877–906, 2012, [10]). along three different directions. First, it features a time varying volatility persistence. Namely, the shock response coefficient in the volatility equation adjusts to the time varying accuracy of the associated realized measure. Second, our framework allows to consider, in a parsimonious way, the inclusion of multiple realized measures. Finally, it allows for heteroskedasticity of the noise component in the measurement equation. The appropriateness of the proposed class of models is appraised by means of an application to a set of stock returns data.

Keywords

Realized measures GARCH Volatility forecasting 

References

  1. 1.
    Andersen, T.G., Dobrev, D., Schaumburg, E.: Jump-robust volatility estimation using nearest neighbor truncation. J. Econom. 169(1), 75–93 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bandi, F.M., Russell, J.R.: Microstructure noise, realized variance, and optimal sampling. Rev. Econom. Stud. 75(2), 339–369 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bandi, F.M., Russell, J.R., Yang, C.: Realized volatility forecasting in the presence of time varying noise. J. Bus. Econom. Stat. 31(3), 331–345 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. Ser. B 64(2), 253–280 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Barndorff-Nielsen, O.E., Hansen, P.H., Lunde, A., Shephard, N.: Designing realized kernels to measure the expost variation of equity prices in the presence of noise. Econom. Econom. Soc. 76(6), 1481–1536 (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Bollerslev, T., Patton, A., Quaedvlieg, R.: Exploiting the errors: a simple approach for improved volatility forecasting. J. Econom. 192(1), 1–18 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brownlees, C.T., Gallo, G.M.: Financial econometric analysis at ultra-high frequency: data handling concerns. Comput. Stat. Data Anal. 51(4), 2232–2245 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gerlach, R., Wang, C.: Forecasting risk via realized GARCH, incorporating the realized range. Quant. Financ. 16(4), 501–511 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hansen, P.R., Huang, Z.: Exponential GARCH modeling with realized measures of volatility. J. Bus. Econ. Stat. 34, 269–287 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hansen, P.R., Huang, Z., Shek, H.H.: Realized GARCH: a joint model for returns and realized measures of volatility. J. Appl. Econom. 27, 877–906 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hansen, P.R., Lunde, A., Nason, J.M.: The model confidence set. Econom. Econom. Soc. 79(2), 453–497 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Liu, L.Y., Patton, A.J., Sheppard, K.: Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. J. Econom. 187(1), 293–311 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Shephard, N., Xiu, D.: Econometric Analysis of Multivariate Realised QML: Efficient Positive Semi-definite Estimators of the Covariation of Equity Prices (2016) (Working Paper)Google Scholar
  14. 14.
    Zhang, L., Mykland, P.A., Ait-Sahalia, Y.: A tale of two time scales: determining integrated volatility with noisy high-frequency data. J. Am. Stat. Assoc. 100(472), 1394–1411 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Discipline of Business Analytics, University of SydneySydneyAustralia
  2. 2.DiSES, University of SalernoSalernoItaly

Personalised recommendations