Advertisement

Anticancer Activity of Salvia miltiorrhiza and Its Secondary Metabolites

  • Ching-Fen Wu
  • Thomas EfferthEmail author
Chapter

Abstract

Salvia miltiorrhiza Bunge (danshen) is a well-known traditional Chinese medicinal herb. The root part of the plant contains most of the bioactive ingredients, which mainly belong to two groups of compounds: hydrophilic phenolic acids and hydrophobic tanshinones. These bioactive compounds refer to as secondary metabolites and exert multiple therapeutic activities, such as anti-oxidative stress, anti-neurodegenerative, anti-inflammatory, and anti-hypertensive effects without showing serious side effects. Besides these pharmacological activities, anticancer effects have also attracted scientific attention. This review will provide an updated summary of the anticancer effects and the proposed mechanisms of the major bioactive compounds isolated from S. miltiorrhiza.

Keywords

Salvia miltiorrhiza Phenolic acid Tanshinone Multidrug resistance Anticancer 

List of Abbreviations

ABC

ATP-binding cassette

AMPK

AMP-activated protein kinase

APL

Acute promyelocytic leukemia

ATRA

All-trans retinoic acid

BCNU

1,3-bis-(2-chloroethyl)-1-nitosourea

BCRP

Breast cancer resistance protein

COX-2

Cyclooxygenase-2

CPT

Cryptotanshinone

DHT

Dihydrotestosterone

DMBA

7,12-dimethylbenz(a)anthracene

DMH

1,2-dimethylhydrazine

EGFR

Epidermal growth factor receptor

eIF4F

Eukaryotic initiation factor 4F

ER

Endoplasmic reticulum

GBD

Global burden of disease

H3K9

Histone H3 lysine 9

HIF-1α

Hypoxia-inducible factor 1 alpha

HNSCC

Head and neck squamous cell cancer

HUVECs

Human umbilical vein endothelial cells

LSD1

Lysine-specific demethylase 1

MDR

Reducing multidrug resistance

MMP

Mitochondrial membrane potential

MMP9

Matrix metalloproteinase 9

MRP1

Multidrug resistance associated protein 1

NQO1

NAD(P)H: quinone oxidoreductase 1

Nrf2

Nuclear factor erythroid-related factor 2

NSCLC

Non-small cell lung cancer

PGE2

Prostaglandin E2

PRMT1

Protein arginine methyltransferase

RA

Rosmarinic acid

ROS

Reactive oxygen species

Sal A

Salvianolic acid A

Sal B

Salvianolic acid B

SCC

Squamous cell carcinoma

STAT3

Signal transducer and activator of transcription 3

TCM

Traditional Chinese medicine

TIMP

Tissue inhibitor of matrix metalloproteinase protein

TRAIL

Tumor necrosis factor-related apoptosis-inducing ligand

VEGFs

Vascular endothelial growth factors

WHO

World Health Organization

Notes

Acknowledgements

We are grateful to the German Academic Exchange Serve (DAAD) for a Ph.D. stipend to C.F.W. We Chunlan Hong for supporting literature survey and Dr. Maen Zeino for critical reading of the manuscript.

Conflict of Interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Fitzmaurice C, Dicker D, Pain A et al (2015) Global burden of disease cancer collaboration. The global burden of cancer 2013. JAMA Oncol 1:505–527.  https://doi.org/10.1001/jamaoncol.2015.0735 PubMedCrossRefGoogle Scholar
  2. 2.
    Bray F (2014) Transitions in human development and the global cancer burden. In: Wild CP, Stewart B (eds) World cancer report. International Agency for Research on Cancer, Lyon, pp 54–68Google Scholar
  3. 3.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70.  https://doi.org/10.1016/S0092-8674(00)81683-9 PubMedCrossRefGoogle Scholar
  4. 4.
    Malhotra V, Perry MC (2003) Classical chemotherapy: mechanisms, toxicities and the therapeutic window. Cancer Biol Ther 2:S2–S4.  https://doi.org/10.4161/cbt.199 PubMedCrossRefGoogle Scholar
  5. 5.
    Siddik ZH (2002) Mechanisms of action of cancer chemotherapeutic agents: DNA-interactive alkylating agents and antitumour platinum-based drugs. In: Alison MR (ed) The cancer handbook. Nature Publishing Group, London, pp 1295–1313Google Scholar
  6. 6.
    Evans BE, Rittle KE, Bock MG et al (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31:2235–2246.  https://doi.org/10.1021/jm00120a002 PubMedCrossRefGoogle Scholar
  7. 7.
    Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519.  https://doi.org/10.1038/nrd3480 PubMedCrossRefGoogle Scholar
  8. 8.
    Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335.  https://doi.org/10.1021/np200906s PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Basmadjian C, Zhao Q, Bentouhami E et al (2014) Cancer wars: natural products strike back. Front Chem 2:20.  https://doi.org/10.3389/fchem.2014.00020 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Luo F, Gu J, Chen L et al (2014) Systems pharmacology strategies for anticancer drug discovery based on natural products. Mol BioSyst 10:1912–1917.  https://doi.org/10.1039/c4mb00105b PubMedCrossRefGoogle Scholar
  11. 11.
    Wang X, Morris-Natschke SL, Lee KH (2007) New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 27:133–148.  https://doi.org/10.1002/med.20077 PubMedCrossRefGoogle Scholar
  12. 12.
    Sung B, Chung HS, Kim M et al (2015) Cytotoxic effects of solvent-extracted active components of Salvia miltiorrhiza Bunge on human cancer cell lines. Exp Ther Med 9:1421–1428.  https://doi.org/10.3892/etm.2015.2252 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wang BQ (2010) Salvia miltiorrhiza: chemical and pharmacological review of a medicinal plant. J Med Plants Res 4:2813–2820. ISSN 1996-0875Google Scholar
  14. 14.
    Zhang YH, Qin X, Xu J (2012) Analysis of Chinese medical syndrome features of patients with primary liver cancer before and after transcatheter arterial chemo-embolization. Zhongguo Zhong Xi I Jie He Za Zhi 32:111–1174. Print ISSN 1003-5370Google Scholar
  15. 15.
    Hu B, Wang SS, Du Q (2015) Traditional Chinese medicine for prevention and treatment of hepatocarcinoma: from bench to bedside. World J Hepatol 7:1209–1232.  https://doi.org/10.4254/wjh.v7.i9.1209 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lahans T (2007) General pathophysiology and treatment: conventional and Chinese medicine. In: Lahans T (ed) Intergrating conventional and Chinese medicine in cancer care: a clinical guide. Elsevier Health Sciences, USA, pp 1–34Google Scholar
  17. 17.
    Chen X, Guo J, Bao J et al (2014) The anticancer properties of Salvia miltiorrhiza Bunge (Danshen): a systematic review. Med Res Rev 34:768–794.  https://doi.org/10.1002/med.21304 PubMedCrossRefGoogle Scholar
  18. 18.
    Du G, Zhang J (2014) Overview of modern research on Danshen. In: Yan X (ed) Danshen (Salvia miltiorrhiza) in medicine. Springer, Dordrecht, pp 3–17Google Scholar
  19. 19.
    Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359.  https://doi.org/10.1177/0091270005282630 PubMedCrossRefGoogle Scholar
  20. 20.
    Liu AH, Li L, Xu M et al (2006) Simultaneous quantification of six major phenolic acids in the roots of Salvia miltiorrhiza and four related traditional Chinese medicinal preparations by HPLC–DAD method. J Pharm Biomed Anal 41:48–56.  https://doi.org/10.1016/j.jpba.2005.10.021 PubMedCrossRefGoogle Scholar
  21. 21.
    Li HB, Chen F (2001) Preparative isolation and purification of six diterpenoids from the Chinese medicinal plant Salvia miltiorrhiza by high-speed counter-current chromatography. J Chromatogr A 925:109–114.  https://doi.org/10.1016/s0021-9673(01)01026-3 PubMedCrossRefGoogle Scholar
  22. 22.
    Lin TH, Hsieh CL (2010) Pharmacological effects of Salvia miltiorrhiza (Danshen) on cerebral infarction. Chin Med 5:22.  https://doi.org/10.1186/1749-8546-5-22 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhang XZ, Qian SS, Zhang YJ et al (2016) Salvia miltiorrhiza: a source for anti-Alzheimer’s disease drugs. Pharm Biol 54:18–24.  https://doi.org/10.3109/13880209.2015.1027408 PubMedCrossRefGoogle Scholar
  24. 24.
    Cheng TO (2007) Cardiovascular effects of Danshen. Int J Cardiol 121:9–22.  https://doi.org/10.1016/j.ijcard.2007.01.004 PubMedCrossRefGoogle Scholar
  25. 25.
    Housman G, Byler S, Heerboth S et al (2014) Drug resistance in cancer: an overview. Cancers (Basel) 6:1769–1792.  https://doi.org/10.3390/cancers6031769 CrossRefGoogle Scholar
  26. 26.
    Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627.  https://doi.org/10.1146/annurev.med.53.082901.103929 PubMedCrossRefGoogle Scholar
  27. 27.
    Gillet JP, Efferth T, Remacle J (2007) Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta 1775:237–262.  https://doi.org/10.1016/j.bbcam.2007.05.002 PubMedGoogle Scholar
  28. 28.
    Scala S, Akhmed N, Rao US et al (1997) P-glycoprotein substrates and antagonists cluster into two distinct groups. Mol Pharmacol 51:1024–1033.  https://doi.org/10.1124/mol.51.6.1024 PubMedCrossRefGoogle Scholar
  29. 29.
    Yague E, Armesilla AL, Harrison G et al (2003) P-glycoprotein (MDR1) expression in leukemic cells is regulated at two distinct steps, mRNA stabilization and translational initiation. J Biol Chem 278:10344–10352.  https://doi.org/10.1074/jbc.m211093200 PubMedCrossRefGoogle Scholar
  30. 30.
    Szakács G, Paterson JK, Ludwig JA et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234.  https://doi.org/10.1038/nrd1984 PubMedCrossRefGoogle Scholar
  31. 31.
    Wu CF, Bohnert S, Thines E et al (2016) Cytotoxicity of the root extract of Salvia miltiorrhiza against multidrug-resistance cancer cells. Am J Chin Med 44:871–894.  https://doi.org/10.1142/s0192415x16500488 PubMedCrossRefGoogle Scholar
  32. 32.
    Wu CF, Klauck SM, Efferth T (2016) Cytotoxicity of cryptotanshinone towards acute lymphoblastic leukemia cells. Arch Toxicol 90:2275–2286.  https://doi.org/10.1007/s00204-015-1616-4 PubMedCrossRefGoogle Scholar
  33. 33.
    Liu J, Zhang C, Hu W et al (2015) Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett 356:197–203.  https://doi.org/10.1016/j.canlet.2013.12.025 PubMedCrossRefGoogle Scholar
  34. 34.
    Giono LE, Manfredi JJ (2006) The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209:13–20.  https://doi.org/10.1002/jcp.20689 PubMedCrossRefGoogle Scholar
  35. 35.
    Smith ML, Seo YR (2002) p53 regulation of DNA excision repair pathways. Mutagenesis 17:149–156.  https://doi.org/10.1093/mutage/17.2.149 PubMedCrossRefGoogle Scholar
  36. 36.
    Amaral JD, Xavier JM, Steer CJ et al (2010) The role of p 53 in apoptosis. Discov Med 9:145–152. ISSN 1539-6509Google Scholar
  37. 37.
    Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976.  https://doi.org/10.1016/j.biocel.2004.10.013 PubMedCrossRefGoogle Scholar
  38. 38.
    Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758.  https://doi.org/10.1038/nrc2723 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    McCurrach ME, Connor TMF, Knudson CM et al (1997) Bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci U S A 94:2345–2349.  https://doi.org/10.1073/pnas.94.6.2345 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Giménez-Bonafé P, Tortosa A, Pérez-Tomás R (2009) Overcoming drug resistance by enhancing apoptosis of tumor cells. Curr Cancer Drug Targets 9:320–340.  https://doi.org/10.2174/156800909788166600 PubMedCrossRefGoogle Scholar
  41. 41.
    Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139.  https://doi.org/10.1056/nejmoa040938 PubMedCrossRefGoogle Scholar
  42. 42.
    Amann J, Kalyankrishna S, Massion PP et al (2005) Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res 65:226–235. Print ISSN 0008-5472Google Scholar
  43. 43.
    Tomas A, Futter CE, Eden ER (2014) EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 24:26–34.  https://doi.org/10.1016/j.tcb.2013.11.002 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lee J, Moon C (2011) Current status of experimental therapeutics for head and neck cancer. Exp Biol Med 236:375–389.  https://doi.org/10.1258/ebm.2010.010354 CrossRefGoogle Scholar
  45. 45.
    Zhang Z, Stiegler AL, Boggon TJ et al (2010) EGFR-mutated lung cancer: a paradigm of molecular oncology. Oncotarget 1:497–514.  https://doi.org/10.18632/oncotarget.186 PubMedPubMedCentralGoogle Scholar
  46. 46.
    Dong Y, Morris-Natschke SL, Lee KH (2011) Biosynthesis, total synthesis, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat Prod Rep 28:529–542.  https://doi.org/10.1039/c0np00035c PubMedCrossRefGoogle Scholar
  47. 47.
    Tian XH, Wu JH (2013) Tanshinone derivatives: a patent review (January 2006–September 2012). Expert Opin Ther Pat 23:19–29.  https://doi.org/10.1517/13543776.2013.736494 PubMedCrossRefGoogle Scholar
  48. 48.
    Li H, Zhang Q, Chu T et al (2012) Growth-inhibitory and apoptosis-inducing effects of tanshinones on hematological malignancy cells and their structure-activity relationship. Anticancer Drugs 23:846–855.  https://doi.org/10.1097/cad.0b013e328351f896 PubMedCrossRefGoogle Scholar
  49. 49.
    Liu F, Yu G, Wang G et al (2012) An NQO1-initiated and p53-independent apoptotic pathway determines the anti-tumor effect of tanshinone IIA against non-small cell lung cancer. PLoS One 7:e42138.  https://doi.org/10.1371/journal.pone.0042138 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hu T, To KK, Wang L et al (2014) Reversal of P-glycoprotein (P-gp) mediated multidrug resistance in colon cancer cells bycryptotanshinone and dihydrotanshinone of Salvia miltiorrhiza. Phytomedicine 21:1264–1272.  https://doi.org/10.1016/j.phymed.2014.06.013 PubMedCrossRefGoogle Scholar
  51. 51.
    Lee WY, Cheung CC, Liu KW et al (2010) Cytotoxic effects of tanshinones from Salvia miltiorrhiza on doxorubicin-resistant human liver cancer cells. J Nat Prod 73:854–859.  https://doi.org/10.1021/np900792p PubMedCrossRefGoogle Scholar
  52. 52.
    Chen L, Wang HJ, Xie W et al (2014) Cryptotanshinone inhibits lung tumorigenesis and induces apoptosis in cancer cells in vitro and in vivo. Mol Med Rep 9:2447–2452.  https://doi.org/10.3892/mmr.2014.2093 PubMedCrossRefGoogle Scholar
  53. 53.
    Yuan DP, Long J, Lu Y et al (2014) The forecast of anticancer targets of cryptotanshinone based on reverse pharmacophore-based screening technology. Chin J Nat Med 12:443–448.  https://doi.org/10.1016/s1875-5364(14)60069-8 PubMedGoogle Scholar
  54. 54.
    Luo Y, Chen W, Zhou H et al (2011) Cryptotanshinone inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3/ERK and small GTPase pathways. Cancer Prev Res (Phila) 4:2083–2091.  https://doi.org/10.1158/1940-6207.capr-11-0319 CrossRefGoogle Scholar
  55. 55.
    Lee HJ, Jung DB, Sohn EJ et al (2012) Inhibition of hypoxia inducible factor alpha and astrocyte-elevated gene-1 mediates cryptotanshinone exerted antitumor activity in hypoxic PC-3 cells. Evid Based Complement Alternat Med 2012:390957.  https://doi.org/10.1155/2012/390957 PubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhu Z, Zhao Y, Li J et al (2016) Cryptotanshinone, a novel tumor angiogenesis inhibitor, destabilizes tumor necrosis factor-α mRNA via decreasing nuclear-cytoplasmic translocation of RNA-binding protein HuR. Mol Carcinog 55:1399–1410.  https://doi.org/10.1002/mc.22383 PubMedCrossRefGoogle Scholar
  57. 57.
    Park IJ, Kim MJ, Park OJ et al (2010) Cryptotanshinone sensitizes DU145 prostate cancer cells to Fas (APO1/CD95)-mediated apoptosis through Bcl-2 and MAPK regulation. Cancer Lett 298:88–98.  https://doi.org/10.1016/j.canlet.2010.06.006 PubMedCrossRefGoogle Scholar
  58. 58.
    Kim JH, Jeong SJ, Kwon TR et al (2011) Cryptotanshinone enhances TNF-α-induced apoptosis in chronic myeloid leukemia KBM-5 cells. Apoptosis 16:696–707.  https://doi.org/10.1007/s10495-011-0605-1 PubMedCrossRefGoogle Scholar
  59. 59.
    Chen W, Liu L, Luo Y et al (2012) Cryptotanshinone activates p38/JNK and inhibits Erk1/2 leading to caspase-independent cell death in tumor cells. Cancer Prev Res (Phila) 5:778–787.  https://doi.org/10.1158/1940-6207.capr-11-0551 CrossRefGoogle Scholar
  60. 60.
    Xia C, Bai X, Hou X et al (2015) Cryptotanshinone reverses cisplatin resistance of human lung carcinoma A549 cells through down-regulating Nrf2 pathway. Cell Physiol Biochem 37:816–824.  https://doi.org/10.1159/000430398 PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang Y, Won SH, Jiang C et al (2012) Tanshinones from Chinese medicinal herb Danshen (Salvia miltiorrhiza Bunge) suppress prostatecancer growth and androgen receptor signaling. Pharma Res 29:1595–1608.  https://doi.org/10.1007/s11095-012-0670-3 CrossRefGoogle Scholar
  62. 62.
    Xu D, Lin TH, Li S et al (2012) Cryptotanshinone suppresses androgen receptor-mediated growth in androgen dependent and castration resistant prostate cancer cells. Cancer Lett 316:11–22.  https://doi.org/10.1016/j.canlet.2011.10.006 PubMedCrossRefGoogle Scholar
  63. 63.
    Wu CY, Hsieh CY, Huang KE et al (2012) Cryptotanshinone down-regulates androgen receptor signaling by modulating lysine-specific demethylase 1 function. Int J Cancer 131:1423–1434.  https://doi.org/10.1002/ijc.27343 PubMedCrossRefGoogle Scholar
  64. 64.
    Lin TH, Lee SO, Niu Y et al (2013) Differential androgen deprivation therapies with anti-androgens casodex/bicalutamide or MDV3100/enzalutamide versus anti-androgen receptor ASC-J9(R) lead to promotion versus suppression of prostate cancer metastasis. J Biol Chem 288:19359–19369.  https://doi.org/10.1074/jbc.m113.477216 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Shin DS, Kim HN, Shin KD et al (2009) Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res 69:193–202.  https://doi.org/10.1158/0008-5472.can-08-2575 PubMedCrossRefGoogle Scholar
  66. 66.
    Lu L, Li C, Li D et al (2013) Cryptotanshinone inhibits human glioma cell proliferation by suppressing STAT3 signaling. Mol Cell Biochem 381:273–282.  https://doi.org/10.1007/s11010-013-1711-x PubMedCrossRefGoogle Scholar
  67. 67.
    Ge Y, Yang B, Chen Z et al (2015) Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancercells via the STAT3 signaling pathway. Mol Med Rep 12:7782–7788.  https://doi.org/10.3892/mmr.2015.4379 PubMedCrossRefGoogle Scholar
  68. 68.
    Yu HJ, Park C, Kim SJ et al (2014) Signal transducer and activators of transcription 3 regulates cryptotanshinone-induced apoptosis in human mucoepidermoid carcinoma cells. Pharmacogn Mag 10:S622–S629.  https://doi.org/10.4103/0973-1296.139802 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Li W, Saud SM, Young MR et al (2015) Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro. Mol Cell Biochem 406:63–73.  https://doi.org/10.1007/s11010-015-2424-0 PubMedCrossRefGoogle Scholar
  70. 70.
    Yan H, Guo BY, Zhang S (2016) Cancer-associated fibroblasts attenuate Cisplatin-induced apoptosis in ovarian cancer cells by promoting STAT3 signaling. Biochem Biophys Res Commun 470:947–954.  https://doi.org/10.1016/j.bbrc.2016.01.131 PubMedCrossRefGoogle Scholar
  71. 71.
    Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389.  https://doi.org/10.1038/sj.cdd.4401373 PubMedCrossRefGoogle Scholar
  72. 72.
    Park IJ, Kim MJ, Park OJ et al (2012) Cryptotanshinone induces ER stress-mediated apoptosis in HepG2 and MCF7 cells. Apoptosis 17:248–257.  https://doi.org/10.1007/s10495-011-0680-3 PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang YF, Zhang M, Huang XL et al (2015) The combination of arsenic and cryptotanshinone induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in breast cancer cells. Metallomics 7:165–173.  https://doi.org/10.1039/c4mt00263f PubMedCrossRefGoogle Scholar
  74. 74.
    Wu CF, Seo EJ, Klauck SM et al (2016) Cryptotanshinone deregulates unfolded protein response and eukaryotic initiation factor signaling in acute lymphoblastic leukemia cells. Phytomedicine 23:174–180.  https://doi.org/10.1016/j.phymed.2015.12.011 PubMedCrossRefGoogle Scholar
  75. 75.
    Tse AK, Chow KY, Cao HH et al (2013) The herbal compounnd cryptotanshinone restores sensitivity in cancer cells that are resistant to the tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 288:29923–29933.  https://doi.org/10.1074/jbc.m113.483909 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Chu J, Pelletier J (2015) Targeting the eIF4A RNA helicase as an anti-neoplastic approach. Biochim Biophys Acta 1849:781–791.  https://doi.org/10.1016/j.bbagrm.2014.09.006 PubMedCrossRefGoogle Scholar
  77. 77.
    Ge Y, Cheng R, Zhou Y et al (2012) Cryptotanshinone induces cell cycle arrest and apoptosis of multidrug resistant human chronic myeloid leukemia cells by inhibiting the activity of eukaryotic initiation factor 4E. Mol Cell Biochem 368:17–25.  https://doi.org/10.1007/s11010-012-1338-3 PubMedCrossRefGoogle Scholar
  78. 78.
    Ge Y, Yang B, Xu X et al (2015) Cryptotanshinone acts synergistically with imatinib to induce apoptosis of human chronic myeloid leukemia cells. Leuk Lymphoma 56:730–738.  https://doi.org/10.3109/10428194.2014.928934 PubMedCrossRefGoogle Scholar
  79. 79.
    Hao W, Zhang X, Zhao W et al (2016) Cryptotanshinone induces pro-death autophagy through JNK signaling mediated by reactive oxygen species generation in lung cancer cells. Anticancer Agents Med Chem 16:593–600.  https://doi.org/10.2174/1871520615666150907093036 PubMedCrossRefGoogle Scholar
  80. 80.
    Hu T, Wang L, Zhang L et al (2015) Sensitivity of apoptosis-resistant colon cancer cells to tanshinones is mediated by autophagic cell death and p53-independent cytotoxicity. Phytomedicine 22:536–544.  https://doi.org/10.1016/j.phymed.2015.03.010 PubMedCrossRefGoogle Scholar
  81. 81.
    Park IJ, Yang WK, Nam SH et al (2014) Cryptotanshinone induces G1 cell cycle arrest and autophagic cell death by activating the AMP-activated protein kinase signal pathway in HepG2 hepatoma. Apoptosis 19:615–628.  https://doi.org/10.1007/s10495-013-0929-0 PubMedCrossRefGoogle Scholar
  82. 82.
    Tung YT, Chen HL, Lee CY et al (2013) Active component of Danshen (Salvia miltiorrhiza Bunge), tanshinone I, attenuates lung tumorigenesis via inhibitions of VEGF, cyclin A, and cyclin B expressions. Evid Based Complement Alternat Med 2013:319247.  https://doi.org/10.1155/2013/319247 PubMedPubMedCentralGoogle Scholar
  83. 83.
    Li Y, Gong Y, Li L et al (2013) Bioactive tanshinone I inhibits the growth of lung cancer in part via downregulation of Aurora A function. Mol Carcinog 52:535–543.  https://doi.org/10.1002/mc.21888 PubMedCrossRefGoogle Scholar
  84. 84.
    Lu M, Wang C, Wang J (2016) Tanshinone I induces human colorectal cancer cell apoptosis: the potential roles of Aurora A-p53 and survivin-mediated signaling pathways. Int J Oncol 49:603–610.  https://doi.org/10.3892/ijo.2016.3565 PubMedCrossRefGoogle Scholar
  85. 85.
    Kim MK, Park GH, Eo HJ et al (2015) Tanshinone I induces cyclin D1 proteasomal degradation in an ERK1/2 dependent way in human colorectal cancer cells. Fitoterapia 101:162–168.  https://doi.org/10.1016/j.fitote.2015.01.010 PubMedCrossRefGoogle Scholar
  86. 86.
    Su CC, Chen GW, Lin JG (2008) Growth inhibition and apoptosis induction by tanshinone I in human colon cancer Colo 205 cells. Int J Mol Med 22:613–618.  https://doi.org/10.3892/ijmm_00000063 PubMedGoogle Scholar
  87. 87.
    Wang L, Wu J, Lu J et al (2015) Regulation of the cell cycle and PI3K/Akt/mTOR signaling pathway by tanshinone I in human breastcancer cell lines. Mol Med Rep 11:931–939.  https://doi.org/10.3892/mmr.2014.2819 PubMedCrossRefGoogle Scholar
  88. 88.
    Liu JJ, Liu WD, Yang HZ et al (2010) Inactivation of PI3k/Akt signaling pathway and activation of caspase-3 are involved in tanshinone I-induced apoptosis in myeloid leukemia cells in vitro. Ann Hematol 89:1089–1097.  https://doi.org/10.1007/s00277-010-0996-z PubMedCrossRefGoogle Scholar
  89. 89.
    Shin EA, Sohn EJ, Won G et al (2014) Upregulation of microRNA135a-3p and death receptor 5 plays a critical role in Tanshinone I sensitized prostate cancer cells to TRAIL induced apoptosis. Oncotarget 5:5624–5636.  https://doi.org/10.18632/oncotarget.2152 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Jing X, Xu Y, Cheng W et al (2016) Tanshinone I induces apoptosis and pro-survival autophagy in gastric cancers. Cancer Chemother Pharmacol 77:1171–1181.  https://doi.org/10.1007/s00280-016-3034-6 PubMedCrossRefGoogle Scholar
  91. 91.
    Lee CY, Sher HF, Chen HW et al (2008) Anticancer effects of tanshinone I in human non-small cell lung cancer. Mol Cancer Ther 7:3527–3538.  https://doi.org/10.1158/1535-7163.MCT-07-2288 PubMedCrossRefGoogle Scholar
  92. 92.
    Wang Y, Li JX, Wang YQ et al (2015) Tanshinone I inhibits tumor angiogenesis by reducing Stat3 phosphorylation at Tyr705 and hypoxia-induced HIF-1α accumulation in both endothelial and tumor cells. Oncotarget 6:16031–16042.  https://doi.org/10.18632/oncotarget.3648 PubMedPubMedCentralGoogle Scholar
  93. 93.
    Nizamutdinova IT, Lee GW, Lee JS et al (2008) Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis 29:1885–1892.  https://doi.org/10.1093/carcin/bgn151 PubMedCrossRefGoogle Scholar
  94. 94.
    Lin JY, Ke YM, Lai JS et al (2015) Tanshinone IIA enhances the effects of TRAIL by downregulating survivin in human ovarian carcinoma cells. Phytomedicine 22:929–938.  https://doi.org/10.1016/j.phymed.2015.06.012 PubMedCrossRefGoogle Scholar
  95. 95.
    Chiu TL, Su CC (2010) Tanshinone IIA induces apoptosis in human lung cancer A549 cells through the induction of reactive oxygen species and decreasing the mitochondrial membrane potential. Int J Mol Med 25:231–236.  https://doi.org/10.3892/ijmm_00000335 PubMedGoogle Scholar
  96. 96.
    Zhang Z, Gao J, Wang Y et al (2009) Tanshinone IIA triggers p53 responses and apoptosis by RNA polymerase II upon DNA minor groove binding. Biochem Pharmacol 78:1316–1322.  https://doi.org/10.1016/j.bcp.2009.06.110 PubMedCrossRefGoogle Scholar
  97. 97.
    Chien SY, Kuo SJ, Chen YL et al (2012) Tanshinone IIA inhibits human hepatocellular carcinoma J5 cell growth by increasing Bax and caspase 3 and decreasing CD31 expression in vivo. Mol Med Rep 5:282–286.  https://doi.org/10.3892/mmr.2011.631 PubMedGoogle Scholar
  98. 98.
    Chen J, Shi DY, Liu SL et al (2012) Tanshinone IIA induces growth inhibition and apoptosis in gastric cancer in vitro and in vivo. Oncol Rep 27:523–528.  https://doi.org/10.3892/or.2011.1524F PubMedCrossRefGoogle Scholar
  99. 99.
    Wang JF, Feng JG, Han J et al (2014) The molecular mechanisms of Tanshinone IIA on the apoptosis and arrest of human esophageal carcinoma cells. Biomed Res Int 2014:582730.  https://doi.org/10.1155/2014/582730 PubMedPubMedCentralGoogle Scholar
  100. 100.
    Wei X, Zhou L, Hu L et al (2012) Tanshinone IIA arrests cell cycle and induces apoptosis in 786-O human renal cell carcinoma cells. Oncol Lett 3:1144–1148.  https://doi.org/10.3892/ol.2012.626 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yun SM, Jeong SJ, Kim JH et al (2013) Activation of c-Jun N-terminal kinase mediates tanshinone IIA-induced apoptosis in KBM-5 chronic myeloid leukemia cells. Biol Pharm Bull 36:208–214.  https://doi.org/10.1248/bpb.b12-00537 PubMedCrossRefGoogle Scholar
  102. 102.
    Zhang J, Wang J, Jiang JY et al (2014) Tanshinone IIA induces cytochrome c-mediated caspase cascade apoptosis in A549 human lungcancer cells via the JNK pathway. Int J Oncol 45:683–690.  https://doi.org/10.3892/ijo.2014.2471 PubMedCrossRefGoogle Scholar
  103. 103.
    Munagala R, Aqil F, Jeyabalan J et al (2015) Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervicalcancer. Cancer Lett 356:536–546.  https://doi.org/10.1016/j.canlet.2014.09.037 PubMedCrossRefGoogle Scholar
  104. 104.
    Yang L, Guo H, Dong L et al (2014) Tanshinone IIA inhibits the growth, attenuates the stemness and induces the apoptosis of human glioma stem cells. Oncol Rep 32:1303–1311.  https://doi.org/10.3892/or.2014.3293 PubMedCrossRefGoogle Scholar
  105. 105.
    Lin C, Wang L, Wang H et al (2013) Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways. J Cell Biochem 114:2061–2070.  https://doi.org/10.1002/jcb.24553 PubMedCrossRefGoogle Scholar
  106. 106.
    Kim EO, Kang SE, Im CR et al (2016) Tanshinone IIA induces TRAIL sensitization of human lung cancer cells through selective ER stress induction. Int J Oncol 48:2205–2212.  https://doi.org/10.3892/ijo.2016.3441 PubMedCrossRefGoogle Scholar
  107. 107.
    Chang CC, Kuan CP, Lin JY et al (2015) Tanshinone IIA facilitates TRAIL sensitization by up-regulating DR5 through the ROS-JNK-CHOP signaling axis in human ovarian carcinoma cell lines. Chem Res Toxicol 28:1574–1583.  https://doi.org/10.1021/acs.chemrestox.5b00150 PubMedCrossRefGoogle Scholar
  108. 108.
    Cheng CY, Su CC (2010) Tanshinone IIA inhibits Hep-J5 cells by increasing calreticulin, caspase 12 and GADD153 protein expression. Int J Mol Med 26:379–385.  https://doi.org/10.3892/ijmm_00000476 PubMedGoogle Scholar
  109. 109.
    Chiu SC, Huang SY, Chen SP et al (2013) Tanshinone IIA inhibits human prostate cancer cells growth by induction of endoplasmic reticulum stress in vitro and in vivo. Prostate Cancer Prostatic Dis 16:315–322.  https://doi.org/10.1038/pcan.2013.38 PubMedCrossRefGoogle Scholar
  110. 110.
    Yan MY, Chien SY, Kuo SJ et al (2012) Tanshinone IIA inhibits BT-20 human breast cancer cell proliferation through increasing caspase 12, GADD153 and phospho-p38 protein expression. Int J Mol Med 29:855–863.  https://doi.org/10.3892/ijmm.2012.908 PubMedGoogle Scholar
  111. 111.
    Pan TL, Wang PW, Hung YC et al (2013) Proteomic analysis reveals tanshinone IIA enhances apoptosis of advanced cervix carcinoma CaSki cells through mitochondria intrinsic and endoplasmic reticulum stress pathways. Proteomics 13:3411–3423.  https://doi.org/10.1002/pmic.201300274 PubMedCrossRefGoogle Scholar
  112. 112.
    Yun SM, Jung JH, Jeong SJ et al (2014) Tanshinone IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 leukemia cells. Phytother Res 28:458–464.  https://doi.org/10.1002/ptr.5015 PubMedCrossRefGoogle Scholar
  113. 113.
    Li C, Han X, Zhang H et al (2016) The interplay between autophagy and apoptosis induced by tanshinone IIA in prostate cancercells. Tumor Biol 37:7667–7674.  https://doi.org/10.1007/s13277-015-4602-9 CrossRefGoogle Scholar
  114. 114.
    Xie J, Liu J, Liu H et al (2015) The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line. Acta Pharm Sin B 5:554–563.  https://doi.org/10.1016/j.apsb.2015.07.008 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Zhou LH, Hu Q, Sui H et al (2012) Tanshinone II–a inhibits angiogenesis through down regulation of COX-2 in human colorectalcancer. Asian Pac J Cancer Prev 13:4453–4458.  https://doi.org/10.7314/apjcp.2012.13.9.4453 PubMedCrossRefGoogle Scholar
  116. 116.
    Li G, Shan C, Liu L et al (2015) Tanshinone IIA inhibits HIF-1α and VEGF expression in breast cancer cells via mTOR/p70S6K/RPS6/4E-BP1 signaling pathway. PLoS ONE 10:e0117440.  https://doi.org/10.1371/journal.pone.0117440 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Liu JJ, Lin DJ, Liu PQ et al (2006) Induction of apoptosis and inhibition of cell adhesive and invasive effects by tanshinone IIA in acute promyelocytic leukemia cells in vitro. J Biomed Sci 13:813–823.  https://doi.org/10.1007/s11373-006-9110-x PubMedCrossRefGoogle Scholar
  118. 118.
    Chiu SC, Huang SY, Chang SF et al (2014) Potential therapeutic roles of tanshinone IIA in human bladder cancer cells. Int J Mol Sci 15:15622–15637.  https://doi.org/10.3390/ijms150915622 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Zhang Y, Wei RX, Zhu XB et al (2012) Tanshinone IIA induces apoptosis and inhibits the proliferation, migration, and invasion of the osteosarcoma MG-63 cell line in vitro. Anticancer Drugs 23:212–219.  https://doi.org/10.1097/cad.0b013e32834e5592 PubMedCrossRefGoogle Scholar
  120. 120.
    Shan YF, Shen X, Xie YK et al (2009) Inhibitory effects of tanshinone II-A on invasion and metastasis of human colon carcinoma cells. Acta Pharmacol Sin 30:1537–1542.  https://doi.org/10.1038/aps.2009.139 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86.  https://doi.org/10.1186/1476-4598-12-86 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Su CC, Chien SY, Kuo SJ et al (2012) Tanshinone IIA inhibits human breast cancer MDA-MB-231 cells by decreasing LC3-II, Erb-B2 and NF-κBp65. Mol Med Rep 5:1019–1022.  https://doi.org/10.3892/mmr.2012.756 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Bai Y, Zhang L, Fang X et al (2016) Tanshinone IIA enhances chemosensitivity of colon cancer cells by suppressing nuclear factor-κB. Exp Ther Med 11:1085–1089.  https://doi.org/10.3892/etm.2016.2984 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Liu W, Zhou J, Geng G et al (2012) Antiandrogenic, maspin induction, and antiprostate cancer activities of tanshinone IIA and its novel derivatives with modification in ring A. J Med Chem 55:971–975.  https://doi.org/10.1021/jm2015292 PubMedCrossRefGoogle Scholar
  125. 125.
    Won SH, Lee HJ, Jeong SJ et al (2012) Activation of p53 signaling and inhibition of androgen receptor mediate tanshinone IIA induced G1 arrest in LNCaP prostate cancer cells. Phytother Res 26:669–674.  https://doi.org/10.1002/ptr.3616 PubMedCrossRefGoogle Scholar
  126. 126.
    Hayashi T, Kakisawa H, Hsu HY et al (1970) The structure of miltirone, a new diterpenoid quinone. J Chem Soc D 5:299.  https://doi.org/10.1039/c2970000299a CrossRefGoogle Scholar
  127. 127.
    Huang W, Li J, Zhang W et al (2006) Synthesis of miltirone analogues as inhibitors of Cdc25 phosphatases. Bioorg Med Chem Lett 16:1905–1908.  https://doi.org/10.1016/j.bmcl.2005.12.080 PubMedCrossRefGoogle Scholar
  128. 128.
    Wu CF, Efferth T (2015) Miltirone induces G2/M cell cycle arrest and apoptosis in CCRF-CEM acute lymphoblastic leukemia cells. J Nat Prod 78:1339–1347.  https://doi.org/10.1021/acs.jnatprod.5b00158 PubMedCrossRefGoogle Scholar
  129. 129.
    Efferth T, Kahl S, Paulus K et al (2008) Phytochemistry and pharmacogenomics of natural products derived from traditional Chinese medicine and Chinese materia medica with activity against tumor cells. Mol Cancer Ther 7:152–161.  https://doi.org/10.1158/1535-7163.MCT-07-0073 PubMedCrossRefGoogle Scholar
  130. 130.
    Zhou X, Wang Y, Lee WY et al (2015) Miltirone is a dual inhibitor of p-glycoprotein and cell growth in doxorubicin-resistant HepG2 cells. J Nat Prod 78:2266–2275.  https://doi.org/10.1021/acs.jnatprod.5b00516 PubMedCrossRefGoogle Scholar
  131. 131.
    Wang L, Hu T, Shen J et al (2016) Miltirone induced mitochondrial dysfunction and ROS-dependent apoptosis in colon cancer cells. Life Sci 151:224–234.  https://doi.org/10.1016/j.lfs.2016.02.083 PubMedCrossRefGoogle Scholar
  132. 132.
    Zhou L, Jiang L, Xu M et al (2016) Miltirone exhibits antileukemic activity by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction pathways. Sci Rep 6:20585.  https://doi.org/10.1038/srep20585 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Rosa LS, Silva NJA, Soares NCP et al (2016) Anticancer properties of phenolic acids in colon cancer—a review. J Nutr Food Sci 6:468.  https://doi.org/10.4172/2155-9600.1000468 Google Scholar
  134. 134.
    Wahle KW, Brown I, Rotondo D et al (2010) Plant phenolics in the prevention and treatment of cancer. Adv Exp Med Biol 698:36–51.  https://doi.org/10.1007/978-1-4419-7347-4-4 PubMedCrossRefGoogle Scholar
  135. 135.
    Ho JH, Hong CY (2011) Salvianolic acids: small compounds with multiple mechanisms for cardiovascular protection. J Biomed Sci 18:30.  https://doi.org/10.1186/1423-0127-18-30 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Wu P, Yan Y, Ma LL et al (2016) Effects of the Nrf2 modulator salvianolic acid A alone or combined with metformin on diabetes-associated microvascular and renal injury. J Biol Chem 291:22288–22301.  https://doi.org/10.1074/jbc.m115.712703 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Qiang G, Yang X, Shi L et al (2015) Antidiabetic effect of salvianolic acid A on diabetic animal models via AMPK activation and mitochondrial regulation. Cell Physiol Biochem 36:395–408.  https://doi.org/10.1159/000430258 PubMedCrossRefGoogle Scholar
  138. 138.
    Hamaguchi T, Ono K, Murase A et al (2009) Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-beta aggregation pathway. Am J Pathol 175:2557–2565.  https://doi.org/10.2353/ajpath.2009.090417 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Hasanein P, Mahtaj AK (2015) Ameliorative effect of rosmarinic acid on scopolamine-induced memory impairment in rats. Neurosci Lett 585:23–27.  https://doi.org/10.1016/j.neulet.2014.11.027 PubMedCrossRefGoogle Scholar
  140. 140.
    Hooker CW, Lott WB, Harrich D (2001) Inhibitors of human immunodeficiency virus type 1 reverse transcriptase target distinct phases of early reverse transcription. J Virol 75:3095–3104.  https://doi.org/10.1128/jvi.75.7.3095-3104.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Chung YC, Hsieh FC, Lin YJ et al (2015) Magnesium lithospermate B and rosmarinic acid, two compounds present in Salvia miltiorrhiza, have potent antiviral activity against enterovirus 71 infections. Eur J Pharmacol 755:127–133.  https://doi.org/10.1016/j.ejphar.2015.02.046 PubMedCrossRefGoogle Scholar
  142. 142.
    Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62:121–125.  https://doi.org/10.1016/s0031-9422(02)00513-7 PubMedCrossRefGoogle Scholar
  143. 143.
    Scheckel KA, Degner SC, Romagnolo DF (2008) Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines. J Nutr 138:2098–2105.  https://doi.org/10.3945/jn.108.090431 PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Tao L, Wang S, Zhao Y et al (2014) Phenolcarboxylic acids from medicinal herbs exert anticancer effects through disruption of COX-2 activity. Phytomedicine 21:1473–1482.  https://doi.org/10.1016/j.phymed.2014.05.001 PubMedCrossRefGoogle Scholar
  145. 145.
    Osakabe N, Yasuda A, Natsume M et al (2004) Rosmarinic acid inhibits epidermal inflammatory responses: anti-carcinogenetic effects of Perilla frutescens extract in the murine two-stage skin mode. Carcinogenesis 25:549–557.  https://doi.org/10.1093/carcin/bgh034 PubMedCrossRefGoogle Scholar
  146. 146.
    Han S, Yang S, Cai Z et al (2015) Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des Dev Ther 9:2695–2703.  https://doi.org/10.2147/dddt.s82342 Google Scholar
  147. 147.
    Yang EJ, Ku SK, Lee W et al (2013) Barrier protective effects of rosmarinic acid on HMGB1-induced inflammatory responses in vitro and in vivo. J Cell Physiol 228:975–982.  https://doi.org/10.1002/jcp.24243 PubMedCrossRefGoogle Scholar
  148. 148.
    Venkatachalam K, Gunasekaran S, Jesudoss VA et al (2013) The effect of rosmarinic acid on 1,2-dimethylhydrazine induced colon carcinogenesis. Exp Toxicol Pathol 65:409–418.  https://doi.org/10.1016/j.etp.2011.12.005 PubMedCrossRefGoogle Scholar
  149. 149.
    Venkatachalam K, Gunasekaran S, Namasivayam N (2016) Biochemical and molecular mechanisms underlying the chemopreventive efficacy of rosmarinic acid in a rat colon cancer. Eur J Pharmacol 791:37–50.  https://doi.org/10.1016/j.ejphar.2016.07.051 PubMedCrossRefGoogle Scholar
  150. 150.
    Furtado RA, Oliveira BR, Silva LR et al (2015) Chemopreventive effects of rosmarinic acid on rat colon carcinogenesis. Eur J Cancer Prev 24:106–112.  https://doi.org/10.1097/cej.0000000000000055 PubMedCrossRefGoogle Scholar
  151. 151.
    Baldasquin-Caceres B, Gomez-Garcia FJ, López-Jornet P et al (2014) Chemopreventive potential of phenolic compounds in oral carcinogenesis. Arch Oral Biol 59:1101–1107.  https://doi.org/10.1016/j.archoralbio.2014.06.007 PubMedCrossRefGoogle Scholar
  152. 152.
    Anusuya C, Manoharan S (2011) Antitumor initiating potential of rosmarinic acid in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. J Environ Pathol Toxicol Oncol 30:199–211.  https://doi.org/10.1615/jenvironpatholtoxicoloncol.v30.i3.30 PubMedCrossRefGoogle Scholar
  153. 153.
    Lee J, Kim YS, Park D et al (2007) Rosmarinic acid induces melanogenesis through protein kinase A activation signaling. Biochem Pharmacol 74:960–968PubMedCrossRefGoogle Scholar
  154. 154.
    Sánchez-Campillo M, Gabaldon JA, Castillo J et al (2009) Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food Chem Toxicol 47:386–392.  https://doi.org/10.1016/j.fct.2008.11.026 PubMedCrossRefGoogle Scholar
  155. 155.
    Ramos AA, Pedro D, Collins AR et al (2012) Protection by Salvia extracts against oxidative and alkylation damage to DNA in human HCT15 and CO115 cells. J Toxicol Environ Health A 75:765–775.  https://doi.org/10.1080/15287394.2012.689804 PubMedCrossRefGoogle Scholar
  156. 156.
    Lozano-Baena MD, Tasset I, Muñoz-Serrano A et al (2016) Cancer prevention and health benefices of traditionally consumed Borago officinalis plants. Nutrients 8: pii: E48.  https://doi.org/10.3390/nu8010048
  157. 157.
    Xu Y, Xu G, Liu L et al (2010) Anti-invasion effect of rosmarinic acid via the extracellular signal-regulated kinase and oxidation-reduction pathway in Ls174-T cells. J Cell Biochem 111:370–379.  https://doi.org/10.1002/jcb.22708 PubMedCrossRefGoogle Scholar
  158. 158.
    Xu Y, Jiang Z, Ji G et al (2010) Inhibition of bone metastasis from breast carcinoma by rosmarinic acid. Planta Med 76:956–962.  https://doi.org/10.1055/s-0029-1240893 PubMedCrossRefGoogle Scholar
  159. 159.
    Xavier CP, Lima CF, Fernandes-Ferreira M et al (2009) Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: the role in MAPK/ERK pathway. Nutr Cancer 61:564–571.  https://doi.org/10.1080/01635580802710733 PubMedCrossRefGoogle Scholar
  160. 160.
    Cao W, Hu C, Wu L et al (2016) Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice. J Pharmacol Sci 132:131–137.  https://doi.org/10.1016/j.jphs.2016.09.003 PubMedCrossRefGoogle Scholar
  161. 161.
    Huang SS, Zheng RL (2006) Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett 239:271–280.  https://doi.org/10.1016/j.canlet.2005.08.025 PubMedCrossRefGoogle Scholar
  162. 162.
    Saiko P, Steinmann MT, Schuster H et al (2015) Epigallocatechin gallate, ellagic acid, and rosmarinic acid perturb dNTP pools and inhibit de novo DNA synthesis and proliferation of human HL-60 promyelocytic leukemia cells: synergism with arabinofuranosylcytosine. Phytomedicine 22:213–222.  https://doi.org/10.1016/j.phymed.2014.11.017 PubMedCrossRefGoogle Scholar
  163. 163.
    Wu CF, Hong C, Klauck SM et al (2015) Molecular mechanisms of rosmarinic acid from Salvia miltiorrhiza in acute lymphoblastic leukemia cells. J Ethnopharmacol 176:55–68.  https://doi.org/10.1016/j.jep.2015.10.020 PubMedCrossRefGoogle Scholar
  164. 164.
    Moon DO, Kim MO, Lee JD et al (2010) Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappaB activation and ROS generation in human leukemia U937 cells. Cancer Lett 288:183–191.  https://doi.org/10.1016/j.canlet.2009.06.033 PubMedCrossRefGoogle Scholar
  165. 165.
    Heo SK, Noh EK, Yoon DJ et al (2015) Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells. Eur J Pharmacol 747:36–44.  https://doi.org/10.1016/j.ejphar.2014.10.064 PubMedCrossRefGoogle Scholar
  166. 166.
    Li FR, Fu YY, Jiang DH et al (2013) Reversal effect of rosmarinic acid on multidrug resistance in SGC7901/Adr cell. J Asian Nat Prod Res 15:276–285.  https://doi.org/10.1080/10286020.2012.762910 PubMedCrossRefGoogle Scholar
  167. 167.
    Berdowska I, Zieliński B, Fecka I et al (2013) Cytotoxic impact of phenolics from Lamiaceae species on human breast cancer cells. Food Chem 141:1313–1321.  https://doi.org/10.1016/j.foodchem.2013.03.090 PubMedCrossRefGoogle Scholar
  168. 168.
    Wu J, Zhu Y, Li F et al (2016) Spica prunellae and its marker compound rosmarinic acid induced the expression of efflux transporters through activation of Nrf2-mediated signaling pathway in HepG2 cells. J Ethnopharmacol 193:1–11.  https://doi.org/10.1016/j.jep.2016.07.021 PubMedCrossRefGoogle Scholar
  169. 169.
    Hsu KC, Sung TY, Lin CT et al (2015) Anchor-based classification and type-C inhibitors for tyrosine kinases. Sci Rep 5:10938.  https://doi.org/10.1038/srep10938 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Bi L, Chen J, Yuan X et al (2013) Salvianolic acid A positively regulates PTEN protein level and inhibits growth of A549 lung cancercells. Biomed Rep 1:213–217.  https://doi.org/10.3892/br.2012.33 PubMedCrossRefGoogle Scholar
  171. 171.
    Cai J, Chen S, Zhang W et al (2014) Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3K/Akt pathway. Phytomedicine 21:1725–1732.  https://doi.org/10.1016/j.phymed.2014.08.007 PubMedCrossRefGoogle Scholar
  172. 172.
    Zheng X, Chen S, Yang Q et al (2015) Salvianolic acid A reverses the paclitaxel resistance and inhibits the migration and invasion abilities of human breast cancer cells by inactivating transgelin 2. Cancer Biol Ther 16:1407–1414.  https://doi.org/10.1080/15384047.2015.1070990 PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Wang X, Wang C, Zhang L et al (2015) Salvianolic acid A shows selective cytotoxicity against multidrug-resistant MCF-7 breast cancer cells. Anticancer Drugs 26:210–223.  https://doi.org/10.1097/cad.0000000000000184 PubMedCrossRefGoogle Scholar
  174. 174.
    Li T, Kong AT, Ma Z et al (2016) Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant. Oncotarget 7:20236–20248.  https://doi.org/10.18632/oncotarget.7752 PubMedPubMedCentralGoogle Scholar
  175. 175.
    Zhao Y, Guo Y, Gu X (2011) Salvianolic Acid B, a potential chemopreventive agent, for head and neck squamous cell cancer. J Oncol 2011:534548.  https://doi.org/10.1155/2011/534548 PubMedCrossRefGoogle Scholar
  176. 176.
    Li GG, Guo ZZ, Ma XF et al (2016) The M2 macrophages induce autophagic vascular disorder and promote mouse sensitivity to urethane-related lung carcinogenesis. Dev Comp Immunol 59:89–98.  https://doi.org/10.1016/j.dci.2016.01.010 PubMedCrossRefGoogle Scholar
  177. 177.
    Hao Y, Xie T, Korotcov A et al (2009) Salvianolic acid B inhibits growth of head and neck squamous cell carcinoma in vitro and in vivo via cyclooxygenase-2 and apoptotic pathways. Int J Cancer 124:2200–2209.  https://doi.org/10.1002/ijc.24160 PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Zhao Y, Hao Y, Ji H et al (2010) Combination effects of salvianolic acid B with low-dose celecoxib on inhibition of head and neck squamous cell carcinoma growth in vitro and in vivo. Cancer Prev Res (Phila) 3:787–796.  https://doi.org/10.1158/1940-6207.CAPR-09-0243 CrossRefGoogle Scholar
  179. 179.
    Zhou ZT, Yang Y, Ge JP (2006) The preventive effect of salvianolic acid B on malignant transformation of DMBA-induced oral premalignant lesion in hamsters. Carcinogenesis 27:826–832.  https://doi.org/10.1093/carcin/bgi271 PubMedCrossRefGoogle Scholar
  180. 180.
    Wei J, Xie G, Ge S et al (2012) Metabolic transformation of DMBA-induced carcinogenesis and inhibitory effect of salvianolic acid b and breviscapine treatment. J Proteome Res 11:1302–1316.  https://doi.org/10.1021/pr2009725 PubMedCrossRefGoogle Scholar
  181. 181.
    Yang Y, Ge PJ, Jiang L et al (2011) Modulation of growth and angiogenic potential of oral squamous carcinoma cells in vitro using salvianolic acid B. BMC Complement Altern Med 11:54.  https://doi.org/10.1186/1472-6882-11-54 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Wang ZS, Luo P, Dai SH et al (2013) Salvianolic acid B induces apoptosis in human glioma U87 cells through p38-mediated ROS generation. Cell Mol Neurobiol 33:921–928.  https://doi.org/10.1007/s10571-013-9958-z PubMedCrossRefGoogle Scholar
  183. 183.
    Wang M, Sun G, Wu P et al (2013) Salvianolic Acid B prevents arsenic trioxide-induced cardiotoxicity in vivo and enhances its anticancer activity in vitro. Evid Based Complement Alternat Med 2013:759483.  https://doi.org/10.1155/2013/759483 PubMedPubMedCentralGoogle Scholar
  184. 184.
    Sun MF, Chang TT, Chang KW et al (2011) Blocking the DNA repair system by traditional Chinese medicine? J Biomol Struct Dyn 28:895–906.  https://doi.org/10.1080/07391102.2011.10508616 PubMedCrossRefGoogle Scholar
  185. 185.
    Zhang LJ, Chen L, Lu Y et al (2010) Danshensu has anti-tumor activity in B16F10 melanoma by inhibiting angiogenesis and tumor cell invasion. Eur J Pharmacol 643:195–201.  https://doi.org/10.1016/j.ejphar.2010.06.045 PubMedCrossRefGoogle Scholar
  186. 186.
    Son B, Jun SY, Seo H et al (2016) Inhibitory effect of traditional oriental medicine-derived monoamine oxidase B inhibitor on radioresistance of non-small cell lung cancer. Sci Rep 6:21986.  https://doi.org/10.1038/srep21986 PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Wang L, Zhang X, Chan JY et al (2016) A novel danshensu derivative prevents cardiac dysfunction and improves the chemotherapeutic efficacy of doxorubicin in breast cancer cells. J Cell Biochem 117:94–105.  https://doi.org/10.1002/jcb.25253 PubMedCrossRefGoogle Scholar
  188. 188.
    Wang L, Zhang X, Cui G et al (2016) A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex II. Oncotarget 7:32054–32064.  https://doi.org/10.18632/oncotarget.8410 PubMedPubMedCentralGoogle Scholar
  189. 189.
    Bi X, Liu X, Di L et al (2016) Improved oral bioavailability using a solid self-microemulsifying drug delivery system containing a multicomponent mixture extracted from Salvia miltiorrhiza. Molecules 21:456.  https://doi.org/10.3390/molecules21040456 PubMedCrossRefGoogle Scholar
  190. 190.
    Tian HL, Yu T, Xu NN et al (2010) A novel compound modified from tanshinone inhibits tumor growth in vivo via activation of the intrinsic apoptotic pathway. Cancer Lett 297:18–30.  https://doi.org/10.1016/j.canlet.2010.04.020 PubMedCrossRefGoogle Scholar
  191. 191.
    Li J, Liu P, Liu JP et al (2013) Bioavailability and foam cells permeability enhancement of Salvianolic acid B pellets based on drug-phospholipids complex technique. Eur J Pharm Biopharm 83:76–86.  https://doi.org/10.1016/j.ejpb.2012.09.021 PubMedCrossRefGoogle Scholar
  192. 192.
    Cai Y, Zhang W, Chen Z et al (2016) Recent insights into the biological activities and drug delivery systems of tanshinones. Int J Nanomed 11:121–130.  https://doi.org/10.2147/ijn.S84035 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Pharmaceutical BiologyInstitute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainzGermany

Personalised recommendations