Skip to main content

Bioactive Constituents of Anatolian Salvia Species

  • Chapter
  • First Online:
Book cover Salvia Biotechnology

Abstract

Salvia (sage) species are grown world-wide, mainly in the three regions; South-East Asia, South Europe to Central and South America with approximately 1000 species. The genus Salvia is represented by over 100 species in Turkey. Since ancient times, they have been used in folk medicine for many purposes in the world, for more than sixty different ailments ranging from aches to epilepsy, and to treat colds, bronchitis, tuberculosis, haemorrhage, some cardiovascular and menstrual disorders. In Anatolia, Salvia species are used against cold and flu, and in the treatment of stomach, liver and rheumatism problems and as wound healing agents. A literature survey and our experiences indicated that terpenoids and flavonoids are the main constituents of them. 45 Anatolian Salvia species have been investigated for their chemical constituents with some biological activities. Di- and triterpenoids were found to be the main non-volatile constituents besides flavonoids and phenolics. The aerial parts, particularly flowers and leaves of Anatolian Salvia species contain flavonoids, triterpenoids, and monoterpenes while diterpenoids are found mostly in the roots. Totally 317 compounds were isolated, major part belonging to diterpenoids, among isolated 158 diterpenoids from Anatolian Salvia species, almost 130 of which have abietane skeleton identified by spectroscopic methods, particularly based on extensive NMR and Mass techniques. In addition to diterpenoids, 60 triterpenoids, 15 steroids, 5 sesterterpenes and 9 sesquiterpenes and 41 flavonoids and 29 other phenolics were isolated. In this chapter, Anatolian Salvia plant extracts and/or its constituents with various biological activities were presented, including antioxidative, antimicrobial, anti-inflammatory, cytotoxic/antitumor, cardiovascular, cholinesterase and some other enzymes inhibitory activities. In addition, some investigations on Salvia species consist of biological properties which carried out on the extracts rather than pure isolates were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cytopathic effect or cytopathogenic effect (abbreviated CPE) refers to structural changes in host cells that are caused by viral invasion.

Abbreviations

UA:

Ursolic acid

OA:

Oleanolic acid

BHA:

Butylated hydroxyanisole

BHT:

Butylated hydroxytoluene

DPPH:

1,1-diphenyl-2-picrylhydrazyl

AAE:

Ascorbic acid equivalent

SFW:

Salvia fruticosa Wildly grown samples

SFC:

Salvia fruticosa Cultivated sample

FRAP:

Ferric-reducing antioxidant power

CUPRAC:

Cupric reducing antioxidant capacity

TE:

Trolox equivalent

AD:

Alzheimer’s disease

NMDA:

N-methyl d-aspartate

AChE:

Acetylcholinesterase

BChE:

Butyrylcholinesterase

BC 1:

Human breast cancer

LU 2:

Human lung cancer

COL 2:

Human colon cancer

KB:

Human epidermoidal carcinoma in mouth

KB-VI:

Multidrug resistant-KB

LNCaP:

Hormone-dependent human prostate cancer

KOPr:

Kappa Opioid Peptide Receptor

References

  1. Jash SK, Gorai D, Roy R (2016) Salvia genus and triterpenoids. Int J Pharm Sci Res 7:4710

    Google Scholar 

  2. Kintzios SE (2003) Sage: the genus Salvia. CRC Press, USA

    Google Scholar 

  3. Lin LZ, Wang X-M, Xiu-Lan H et al (1989) Sapriolactone, a cytotoxic norditerpene from Salvia prionitis. Phytochemistry 28:3542–3543

    Google Scholar 

  4. Zhang Y, Mao X, Su J et al (2017) A network pharmacology-based strategy deciphers the underlying molecular mechanisms of Qixuehe Capsule in the treatment of menstrual disorders. Chin Med 12:23

    Google Scholar 

  5. Chen W (1981) Acta Pharm Sinica 19:876

    Google Scholar 

  6. Perry NSL, Bollen C, Perry EK et al (2003) Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial. Pharmacol Biochem Behav 75:651–659. https://doi.org/10.1016/s0091-3057(03)00108-4

  7. Howes MJR, Perry NS, Houghton PJ (2003) Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders. Phytotherapy Res 17:1–18

    Google Scholar 

  8. Topcu G et al (2013) Investigation of anticholinesterase activity of a series of Salvia extracts and the constituents of Salvia staminea. Nat Prod J 3(1):3–9

    CAS  Google Scholar 

  9. Azizkhani M, Tooryan F, Azizkhani M (2016) Inhibitory potential of Salvia sclarea and Ocimum basilicum against chemical and microbial spoilage in cheese. J Food Saf 36:109–119

    Google Scholar 

  10. Shibly O, Ciancio S, Kazmierczak M et al (1996) Clinical evaluation of the effect of a hydrogen peroxide mouth rinse, sodium bicarbonate dentifrice, and mouth moisturizer on oral health. J Clin Dent 8:145–149

    Google Scholar 

  11. Pitten F-A, Kramer A (1999) Antimicrobial efficacy of antiseptic mouthrinse solutions. Eur J Clin Pharmacol 55:95–100

    Google Scholar 

  12. Sezik E, Yesilada E (1999) Ucucu Yag Tasıyan Turk Halk Ilacları (Turkish folk medicine containing volatile oils). In: Kirimer N, Mat A (eds) Essential Oils—In Honour of Prof. Dr. K. Hüsnü Can Baser On his 50th Birthday, Anadolu University Press, Eskisehir, pp 98–131

    Google Scholar 

  13. Hedge IC (1982) Salvia L. In: Davis PH (ed) Flora of Turkey and the East Aegean Islands, vol 7, (pp 400–461). Edinburgh: Edinburgh University Press

    Google Scholar 

  14. Ulubelen A, Topcu G, Terem B (1987) Abietane diterpenoids from the roots of Salvia cryptantha. Phytochemistry 26(5):1534–1535

    Article  CAS  Google Scholar 

  15. Topcu G, Ulubelen A (1996) Abietane and rearranged abietane diterpenes from Salvia montbretii. J Nat Prod 59(8):734–737

    Article  CAS  Google Scholar 

  16. Topcu G et al (2004) Highly hydroxylated triterpenes from Salvia kronenburgii. J Nat Prod 67(1):118–121

    Article  CAS  PubMed  Google Scholar 

  17. Topcu G, Ulubelen A (2007) Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques. J Mol Struct 834:57–73

    Google Scholar 

  18. Ulubelen A et al (2001) Antibacterial diterpenes from the roots of Salvia blepharochlaena. J Nat Prod 64(4):549–551

    Article  CAS  PubMed  Google Scholar 

  19. Ulubelen A, Topcu G, Johansson CB (1997) Norditerpenoids and diterpenoids from Salvia multicaulis with antituberculous activity. J Nat Prod 60(12):1275–1280

    Article  CAS  PubMed  Google Scholar 

  20. Topcu G et al (2008) Cytotoxic activity of some Anatolian Salvia extracts and isolated abietane diterpenoids. Pharm Biol 46(3):180–184

    Article  CAS  Google Scholar 

  21. Çulhaoğlu B et al (2015) Antioxidant and anticholinesterase activities of lupane triterpenoids and other constituents of Salvia trichoclada. Med Chem Res 24(11):3831–3837

    Article  CAS  Google Scholar 

  22. Senol FS et al (2010) Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities. Food Chem 120(1):34–43

    Article  CAS  Google Scholar 

  23. Hatipoglu SD, Zorlu N, Dirmenci T et al (2016) Determination of volatile organic compounds in fourty five Salvia species by thermal desorption-GC-MS technique. Rec Nat Prod 10:659

    Google Scholar 

  24. Baser HC, Buchbauer G (2015) Handbook of essential oils: science, technology, and applications, 2nd ed. CRC Press, USA

    Google Scholar 

  25. Kunduhoglu B, Kurkcuoglu M, Duru ME et al (2011) Antimicrobial and anticholinesterase activities of the essential oils isolated from Salvia dicroantha Stapf., Salvia verticillata L. subsp amasiaca (Freyn. and Bornm.) Bornm. and Salvia wiedemannii Boiss. J Med Plants Res 5:6484–6490. https://doi.org/10.5897/jmpr11.220

  26. Lu Y, Foo LY (2002) Polyphenolics of salvia—a review. Phytochemistry 59:117–140

    Google Scholar 

  27. Topçu G (2006) Bioactive Triterpenoids from Salvia Species. J Nat Prod 69:482–487

    Google Scholar 

  28. Wu Y-B, Ni Z-Y, Shi Q-W et al (2012) Constituents from Salvia species and their biological activities. Chem Rev 112:5967–6026

    Google Scholar 

  29. Ulubelen A, Topçu G (1997) Chemical and biological investigations of Salvia species growing in Turkey. Stud Nat Prod Chem 20:659–718

    Google Scholar 

  30. Topçu G et al (2013) Terpenoids, essential oil composition, fatty acid profile, and biological activities of Anatolian Salvia fruticosa Mill. Turk J Chem 37(4):619–632

    Google Scholar 

  31. Kintzios SE (2003) III. Chemical constituents, 4. Ulubelen A (ed) Terpenoids in genus Salvia. Ser. vol 55, pp (58–71). CRC Press

    Google Scholar 

  32. Orhan IE et al (2013) Assessment of anticholinesterase and antioxidant properties of selected sage (Salvia) species with their total phenol and flavonoid contents. Ind Crop Prod 41:21–30

    Article  CAS  Google Scholar 

  33. Tepe B et al (2004) Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chem 84(4):519–525

    Article  CAS  Google Scholar 

  34. Ulubelen A et al (1999) Cytotoxic activity of diterpenoids isolated from Salvia hypargeia. Pharm Biol 37(2):148–151

    Article  CAS  Google Scholar 

  35. Ulubelen A (2003) Cardioactive and antibacterial terpenoids from some Salvia species. Phytochemistry 64(2):395–399

    Article  CAS  PubMed  Google Scholar 

  36. Goze I et al (2009) In Vitro Amoebicidal Activity of Salvia staminea and Salvia caespitosa on Acanthamoeba castellanii and Their Cytotoxic Potentials on Corneal Cells. J Ocul Pharmacol Th 25(4):293–298

    Article  CAS  Google Scholar 

  37. Kivrak İ et al (2009) Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem 116(2):470–479

    Article  CAS  Google Scholar 

  38. Aydoğmuş Z, Yeşilyurt V, Topcu G (2006) Constituents of Salvia microphylla. Nat Prod Res 20(8):775–781

    Article  PubMed  CAS  Google Scholar 

  39. Ulubelen A, Topcu G, Tuzlaci E (1992) New diterpenoids from Salvia divaricata. J Nat Prod 55(10):1518–1521

    Article  CAS  Google Scholar 

  40. Topcu G et al (1996) Sesterterpenes and other constituents of Salvia yosgadensis. Phytochemistry 42(4):1089–1092

    Article  CAS  Google Scholar 

  41. Topcu G et al (1995) Terpenoids and flavonoids from the aerial parts of Salvia candidissima. Phytochemistry 40(2):501–504

    Article  CAS  Google Scholar 

  42. Gökdil G et al (1997) Terpenoids and flavonoids from Salvia cyanescens. Phytochemistry 46(4):799–800

    Article  Google Scholar 

  43. Ulubelen A et al (1996) Norsesterterpenes and diterpenes from the aerial parts of Salvia limbata. Phytochemistry 43(2):431–434

    Article  CAS  Google Scholar 

  44. Ulubelen A et al (1994) Terpenoids from Salvia sclarea. Phytochemistry 36(4):971–974

    Article  CAS  PubMed  Google Scholar 

  45. Topcu G et al (2003) Studies on di-and triterpenoids from Salvia staminea with cytotoxic activity. Planta Med 69(05):464–467

    Article  CAS  PubMed  Google Scholar 

  46. Topcu G et al (2007) Antioxidant activity tests on novel triterpenoids from Salvia macrochlamys. Arkivoc 7:195–208

    Google Scholar 

  47. Topçu G, Kartal M, Ulubelen A (1997) Terpenoids from Salvia tchihatcheffii. Phytochemistry 44(7):1393–1395

    Article  Google Scholar 

  48. Ulubelen A, Tuzlacı E (1987) Terpenoids from Salvia potentillifolia. Planta Med 53(06):578–578

    Article  CAS  PubMed  Google Scholar 

  49. Topçu G, Ulubelen A (1999) Terpenoids from Salvia kronenburgii. J Nat Prod 62(12):1605–1608

    Article  CAS  Google Scholar 

  50. Ulubelen A, Sonmez U, Topcu G (1997) Diterpenoids from the roots of Salvia sclarea. Phytochemistry 44(7):1297–1299

    Article  CAS  Google Scholar 

  51. Ulubelen A et al (1995) Abietane diterpenes from Salvia napifolia. Phytochemistry 40(3):861–864

    Article  CAS  Google Scholar 

  52. Ulubelen A, Tan N, Topcu G (1997) Terpenoids from Salvia candidissima subsp. candidissima. Phytochemistry 45(6):1221–1223

    Article  CAS  Google Scholar 

  53. Ulubelen A, Topcu G (1991) Abietane diterpenoids from Salvia microstegia. Phytochemistry 30(6):2085–2086

    Article  CAS  Google Scholar 

  54. Ulubelen A, Topcu G, Tan N (1992) Rearranged abietane diterpenes from Salvia candidissima. Phytochemistry 31(10):3637–3638

    Article  CAS  Google Scholar 

  55. Topcu G, Eriş C, Ulubelen A (1996) Rearranged abietane diterpenes from Salvia limbata. Phytochemistry 41(4):1143–1147

    Article  CAS  Google Scholar 

  56. Ulubelen A et al (2002) Cardioactive diterpenes from the roots of Salvia eriophora. Planta Med 68(09):818–821

    Article  CAS  PubMed  Google Scholar 

  57. Topcu G, Ulubelen A (1990) Diterpenoids from Salvia wiedemannii. Phytochemistry 29(7):2346–2348

    Article  CAS  Google Scholar 

  58. Tan N, Topçu G, Ulubelen A (1998) Norabietane diterpenoids and other terpenoids from Salvia recognita. Phytochemistry 49(1):175–178

    Article  CAS  Google Scholar 

  59. Ulubelen A et al (1999) Diterpenoids from the roots of Salvia bracteata. Phytochemistry 52(8):1455–1459

    Article  CAS  Google Scholar 

  60. Ulubelen A, Topcu G (1992) New abietane diterpenoids from Salvia montbretii. J Nat Prod 55(4):441–444

    Article  CAS  Google Scholar 

  61. Topcu G, Ulubelen A (1991) Diterpenoids from Salvia wiedemannii. Phytochemistry 30(7):2412–2413

    Article  CAS  Google Scholar 

  62. Ulubelen A et al (2000) Antibacterial diterpenes from the roots of Salvia viridis. Planta Med 66(05):458–462

    Article  CAS  PubMed  Google Scholar 

  63. Sonmez U, Topcu G, Ulubelen A (1997) Constituents of Salvia verticillata. Turk J Chem 21(4):376–382

    CAS  Google Scholar 

  64. Ulubelen A, Topcu G, Tan N (1992) Diterpenoids from Salvia candidissima. Tetrahedron Lett 33(47):7241–7244

    Article  CAS  Google Scholar 

  65. Ulubelen A et al (1998) Diterpenoids and triterpenoids from Salvia multicaulis. Phytochemistry 47(5):899–901

    Article  CAS  Google Scholar 

  66. Goren AC et al (2002) Diterpenoids from Salvia ceratophylla. Nat Prod Lett 16(1):47–52

    Article  CAS  PubMed  Google Scholar 

  67. Ulubelen A, Miski M, Mabry T (1981) A new diterpene acid from Salvia tomentosa. J Nat Prod 44(1):119–124

    Article  CAS  Google Scholar 

  68. Ulubelen A et al (2000) Cardioactive terpenoids and a new rearranged diterpene from Salvia syriaca. Planta Med 66(07):627–629

    Article  CAS  PubMed  Google Scholar 

  69. Topcu G et al (1996) Norditerpenes and Norsesterterpenes from Salvia yosgadensis. J Nat Prod 59(2):113–116

    Article  CAS  Google Scholar 

  70. Ulubelen A et al (2001) A new antibacterial diterpene from the roots of Salvia caespitosa. Nat Prod Lett 15(5):307–314

    Article  CAS  PubMed  Google Scholar 

  71. Ulubelen A (1990) New diterpenoids from the roots of Salvia triloba. Planta Med 56(01):82–83

    Article  CAS  PubMed  Google Scholar 

  72. Kolak U et al (2005) Terpenoids and steroids from the roots of Salvia blepharochlaena. Turk J Chem 29(2):177–186

    CAS  Google Scholar 

  73. Kolak US et al (2001) Cardioactive diterpenoids from the roots of Salvia amplexicaulis. Planta Med 67(08):761–763

    Article  CAS  PubMed  Google Scholar 

  74. Ulubelen A et al (1994) Terpenoids from Salvia nemorosa. Phytochemistry 35(4):1065–1067

    Article  CAS  Google Scholar 

  75. Ulubelen A, Topcu G, Tan N (1995) Diterpenoids from Salvia heldrichiana. Phytochemistry 40(5):1473–1475

    Article  CAS  Google Scholar 

  76. Ulubelen A, Öztürk S, Işıldatıcı S (1968) A new flavone from Salvia triloba L.f (Labiatae). J Pharm Sci 57(6):1037–1038

    Article  CAS  PubMed  Google Scholar 

  77. Ulubelen A et al (1988) Diterpenoids from the roots of Salvia hypargeia. J Nat Prod 51(6):1178–1183

    Article  CAS  PubMed  Google Scholar 

  78. Topcu G et al (2007) Structure elucidation of a new rearranged abietane diterpene from a biologically active plant. Salvia eriophora. 2:981–986

    Google Scholar 

  79. Ulubelen A, Topcu G (1992) Abietane diterpenoids from Salvia pomifera. Phytochemistry 31(11):3949–3951

    Article  CAS  Google Scholar 

  80. Ulubelen A et al (1996) An abietane diterpene and two phenolics from Salvia forskahlei. Phytochemistry 42(1):145–147

    Article  CAS  PubMed  Google Scholar 

  81. Ulubelen A et al (1992) Microstegiol, a rearranged diterpene from Salvia microstegia. Phytochemistry 31(7):2419–2421

    Article  CAS  Google Scholar 

  82. Topcu G, Ulubelen A, Eris C (1994) Diterpenoids and tritepenoids from Salvia pomifera. Phytochemistry 36(3):743–745

    Article  CAS  Google Scholar 

  83. Ulubelen A, Topcu G (2000) Salvimultine, a new noricetexane diterpene from the roots of Salvia multicaulis. J Nat Prod 63(6):879–880

    Google Scholar 

  84. Çulhaoğlu B et al (2013) Bioactive constituents of Salvia chrysophylla Stapf. Nat Prod Res 27(4–5):438–447

    Article  PubMed  CAS  Google Scholar 

  85. Ulubelen A et al (1985) Terpenoids from Salvia palaestina. Phytochemistry 24(6):1386–1387

    Article  CAS  Google Scholar 

  86. Kolak U et al (2009) Antioxidant and anticholinesterase constituents of Salvia poculata. Turk J Chem 33(6):813–823

    CAS  Google Scholar 

  87. Ulubelen A et al (1991) A new abietane diterpene from Salvia wiedemannii Boiss. J Org Chem 56(26):7354–7356

    Article  CAS  Google Scholar 

  88. Topcu G et al (1997) Terpenoids from Salvia glutinosa. Phytochemistry 45(6):1293–1294

    Article  CAS  PubMed  Google Scholar 

  89. Ulubelen A, Topcu G, Lotter H et al (1994) Triterpenoids from the aerial parts of Salvia montbretii. Phytochemistry 36:413–415

    Google Scholar 

  90. Ulubelen A, Miski M, Mabry T (1981) Further flavones and triterpenes and the new 6-hydroxyluteolin 5-β-D-glucoside from Salvia tomentosa. J Nat Prod 44(5):586–587

    Article  CAS  Google Scholar 

  91. Ulubelen A, Topçu G (1984) Flavonoids and terpenoids from Salvia verticillata and Salvia pinnata. J Nat Prod 47(6):1068

    Article  CAS  Google Scholar 

  92. Ulubelen A, Topçu G (1984) Triterpenoids from Salvia pinnata. Phytochemistry 23(1):133–134

    Article  CAS  Google Scholar 

  93. Demirezer OL et al (2012) Chemical constituents of two sages with free radical scavenging activity. Nat Prod Comm 7(2):187–190

    CAS  Google Scholar 

  94. Ulubelen A, Uygur I (1976) Flavonoidal and other compounds of Salvia aethiopis. Planta Med 29(04):318–320

    Article  CAS  PubMed  Google Scholar 

  95. Ulubelen A et al (1979) Flavonoids of Salvia tomentosa (Labiatae). J Nat Prod 42(3):261–263

    Article  CAS  Google Scholar 

  96. Miski M et al (1983) Antibacterial activity studies of flavonoids from Salvia palaestina. J Nat Prod 46(6):874–875

    Article  CAS  PubMed  Google Scholar 

  97. Kocak MS et al (2016) Salvia cadmica: Phenolic composition and biological activity. Ind Crop Prod 85:204–212

    Article  CAS  Google Scholar 

  98. Kirmizibekmez H et al (2012) Chemical constituents of Salvia dichroantha. Biochem Syst Ecol 42:18–20

    Article  CAS  Google Scholar 

  99. Dincer C et al (2012) A comparative study on phenolic composition, antioxidant activity and essential oil content of wild and cultivated sage (Salvia fruticosa Miller) as influenced by storage. Ind Crop Prod 39:170–176

    Article  CAS  Google Scholar 

  100. Dincer C et al (2013) Phenolic composition and antioxidant activity of Salvia tomentosa Miller: effects of cultivation, harvesting year, and storage. Turk J Agricul Forest 37(5):561–567

    Article  CAS  Google Scholar 

  101. Tekeli Y et al (2014) Phenolic composition, Antioxidant capacity of Salvia verticilata and effect on multidrug resistant bacteria by flow-cytometry. Afr J Tradit Complem Altern Med 11(4):147–152

    Article  CAS  Google Scholar 

  102. Torun M et al (2014) Concentration of sage (Salvia fruticosa Miller) extract by using integrated membrane process. Sep Purif Technol 132:244–251

    Article  CAS  Google Scholar 

  103. Yeşilyurt V et al (2008) Antioxidant potential and phenolic constituents of Salvia cedronella. Food Chem 108(1):31–39

    Article  CAS  Google Scholar 

  104. Ulubelen A, Ayanoglu E (1975) Flavonoids of Salvia virgata. Lloydia 38:446–447

    Google Scholar 

  105. Ulubelen A (1989) Virgatol, a new diterpene from the roots of Salvia virgata. Planta Med 55:397. https://doi.org/10.1055/s-2006-962043

  106. Burnell RH, Desfossés S, Jean M (1993) Concerning montbretyl 12-methyl ether. J Nat Prod 56:627–628

    Google Scholar 

  107. Gil RR, Cordell GA, Topçu G et al (1994) Montbretol and salvinolone are identical. J Nat Prod 57:181–185

    Google Scholar 

  108. Rustaiyan A, Sadjadi A (1987) Salvisyriacolide, a sesterterpene from Salvia syriaca, vol 26, pp 3078–3079

    Google Scholar 

  109. Topcu G, Kusman T (2014) Lamiaceae family plants as a potential anticholinesterase source in the treatment of Alzheimer’s disease Bezmialem. Science 2:1–25

    Google Scholar 

  110. Ulubelen A, Ayanoğlu E (1976) Vergatic acid, a new pentacyclic triterpene from Salvia virgata. Phytochemistry 15:309–311

    Google Scholar 

  111. Ulubelen A, Brieskorn C (1975) Pentacyclic triterpenic acids: micromeric acid from Salvia horminum. Phytochemistry 14:820–821

    Google Scholar 

  112. Ulubelen A, Brieskorn CH, Özdemir N (1977) Triterpenoids of Salvia horminum, constitution of a new diol. Phytochemistry 16:790–791. https://doi.org/10.1016/S0031-9422(00)89266-3

  113. Brieskorn CH, Kapadia Z (1980) Bestandteile von Salvia officinalis. Planta Med 38:86–90

    Google Scholar 

  114. Abdel-Moneim F, Elgamal M, Fayez M et al (1967) Constituents of local plants—XI.: the triterpenoid acids of Salvia lanigera Poir. and S. triloba L. Phytochemistry 6:1035–1036

    Google Scholar 

  115. Arı Ş, Kolak U, Hasancebi S et al (2001) Characterization of two triterpenes and a steroid from the cultured roots of Salvia amplexicaulis. Biotechnol Biotechnol Equip 15:23–26

    Google Scholar 

  116. Orhan IE, Senol FS, Ozturk N et al (2012) Profiling of in vitro neurobiological effects and phenolic acids of selected endemic Salvia species. Food Chem 132(3):1360–1367. https://doi.org/10.1016/j.foodchem.2011.11.119

    Article  CAS  PubMed  Google Scholar 

  117. Tohma H et al (2016) RP-HPLC/MS/MS analysis of the phenolic compounds, antioxidant and antimicrobial activities of Salvia L. species. Antioxidants 5(4):38

    Google Scholar 

  118. Wang LL, Ma RF, Liu CY et al (2017) Salvia miltiorrhiza: a potential red light to the development of cardiovascular diseases. Curr Pharm Des 23:1077–1097. https://doi.org/10.2174/1381612822666161010105242

  119. Tepe B et al (2006) Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem 95(2):200–204

    Article  CAS  Google Scholar 

  120. Tosun M et al (2009) Antioxidant properties and total phenolic content of eight Salvia species from Turkey. Biol Res 42(2):175–181

    Article  CAS  PubMed  Google Scholar 

  121. Poyraz İE, Çiftçi GA, Öztürk N (2017) Phenolic contents, in vitro antioxidant and cytotoxicity activities of Salvia aethiopis L. and S. ceratophylla L. (Lamiaceae). Rec Nat. Prod 11(4):2

    Google Scholar 

  122. Orhan I et al (2007) Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chem 103(4):1247–1254

    Article  CAS  Google Scholar 

  123. Ozkan G, Ozcan MM, Al Juhaimi FY (2012) Sage (Salvia aucheri Bentham var. canescens Boiss. and Heldr.): essential oil composition, phenolics and antioxidant activity. Asian J Chem 24(5):2225–2227

    Google Scholar 

  124. Arslan I, Celik A, Mercan N (2009) Chemical constituents and in vitro antistaphylococcal activities of endemic Salvia cedronella and S. fruticosa naturally distributed in Denizli (Turkey). Planta Med 75(9):962

    Article  Google Scholar 

  125. Tel G et al (2010) Chemical composition of the essential oil and hexane extract of Salvia chionantha and their antioxidant and anticholinesterase activities. Food Chem Toxicol 48(11):3189–3193

    Article  CAS  PubMed  Google Scholar 

  126. Ozer H et al (2013) Antitumoral effects of Salvia absconditiflora Greuter & Burdet syn. Salvia cryptantha Montbret & Aucher ex Benth. on Breast cancer. Indian J Tradit Knowl 12(3):390–397

    Google Scholar 

  127. Yumrutas O et al (2012) Phenolic acid contents, essential oil compositions and antioxidant activities of two varieties of Salvia euphratica from Turkey. Nat Prod Res 26(19):1848–1851

    Article  CAS  PubMed  Google Scholar 

  128. Cadirci E et al (2012) Anti-inflammatory effects of different extracts from three Salvia species. Turk J Biol 36(1):59–64

    Google Scholar 

  129. Tan N et al (2016) Antimycobacterial and antifungal activities of selected sour Salvia species. Rec Nat Prod 10(5):593

    CAS  Google Scholar 

  130. Askun T et al (2009) Characterization of the phenolic composition and antimicrobial activities of Turkish medicinal plants. Pharm Biol 47(7):563–571

    Article  CAS  Google Scholar 

  131. Senol FS et al (2011) Evaluation of cholinesterase inhibitory and antioxidant activities of wild and cultivated samples of sage (Salvia fruticosa) by activity-guided fractionation. J Med Food 14(11):1476–1483

    Article  CAS  PubMed  Google Scholar 

  132. Erdogan-Orhan I et al (2010) Sage-called plant species sold in Turkey and their antioxidant activities. J Serb Chem Soc 75(11):1491–1501

    Article  CAS  Google Scholar 

  133. Erdoğan SS, Karık Ü, Başer KHC (2014) The determination of antioxidant activity of some sage populations of in the Marmara Region. Türk Tarım ve Doğa Bilimleri 7(7):1877–1882

    Google Scholar 

  134. Demirezer LÖ et al (2015) Molecular docking and ex vivo and in vitro anticholinesterase activity studies of Salvia sp. and highlighted rosmarinic acid. Turk. J Med Sci 45(5):1141–1148

    CAS  Google Scholar 

  135. Yıldırım A et al (2000) Comparison of antioxidant and antimicrobial activities of Tilia (Tilia argentea Desf ex DC), sage (Salvia triloba L.), and Black tea (Camellia sinensis) extracts. J Agricul Food Chem 48(10):5030–5034

    Article  CAS  Google Scholar 

  136. Özcan MM, Özkan G (2015) Determination of antioxidant activity and total phenol contents of two Salvia extracts. Indian J Trad Knowl 14:226–230

    Google Scholar 

  137. Orhan I, Aslan M (2009) Appraisal of scopolamine-induced antiamnesic effect in mice and in vitro antiacetylcholinesterase and antioxidant activities of some traditionally used Lamiaceae plants. J Ethnopharmacol 122(2):327–332

    Article  PubMed  Google Scholar 

  138. Altay A (2015) Antioxidant and cytotoxic properties of Salvia fruticosa M. and its effects on gene expression of some CYP450 and antioxidant enzymes in HT-29 cell line. Middle East Technical University

    Google Scholar 

  139. Atmaca H, Bozkurt E (2016) Apoptotic and anti-angiogenic effects of Salvia triloba extract in prostate cancer cell lines. Tumor Biol 37(3):3639–3646

    Article  Google Scholar 

  140. Sevindik N, Rencuzogullari E (2014) The genotoxic and antigenotoxic effects of Salvia fruticosa leaf extract in human blood lymphocytes. Drug Chem Toxicol 37(3):295–302

    Article  CAS  PubMed  Google Scholar 

  141. Albayrak S, Aksoy A, Hamzaoğlu E (2008) Determination of antimicrobial and antioxidant activities of Turkish endemic Salvia halophila Hedge. Turk J Biol 32(4):265–270

    Google Scholar 

  142. Kosar M, Goger F, Baser KHC (2011) In vitro antioxidant properties and phenolic composition of Salvia halophila Hedge from Turkey. Food Chem 129(2):374–379

    Article  CAS  Google Scholar 

  143. Erdogan EA, Everest A, Kaplan E (2013) Antimicrobial activities of aqueous extracts and essential oils of two endemic species from Turkey. Indian J Tradit Knowl 12(2):221–224

    Google Scholar 

  144. Ozcan B et al (2009) In vitro antimicrobial and antioxidant activities of various extracts of Salvia microstegia (Boiss.) Et. Bal. from Antakya, Turkey. Fresenius Environmental Bulletin 18(5a):658–662

    CAS  Google Scholar 

  145. Erdemoglu N et al (2006) Antioxidant activities of some Lamiaceae plant extracts. Phytother Res 20(1):9–13

    Article  PubMed  Google Scholar 

  146. Bahadori MB et al (2017) Salvia nemorosa L.: A novel source of bioactive agents with functional connections. LWT-Food Sci Technol 75:42–50

    Article  CAS  Google Scholar 

  147. Yuce E et al (2014) Essential oil composition, antioxidant and antifungal activities of Salvia sclarea L. from Munzur Valley in Tunceli, Turkey. Cell Mol Biol 60(2):1–5

    CAS  PubMed  Google Scholar 

  148. Tepe B (2008) Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia virgata (Jacq), Salvia staminea (Montbret & Aucher ex Bentham) and Salvia verbenaca (L.) from Turkey. Biores Technol 99(6):1584–1588

    Google Scholar 

  149. Bahadori MB et al (2017) Functional components, antidiabetic, anti-Alzheimer’s disease, and antioxidant activities of Salvia syriaca L. Int J Food Prop 20(8):1761–1772

    Article  CAS  Google Scholar 

  150. Dulger B, Hacioglu N (2008) Antifungal activity of endemic Salvia tigrina in Turkey. Trop J Pharm Res 7(3):1051–1054

    Google Scholar 

  151. Karakaş FP, Yildirim A, Türker A (2012) Biological screening of various medicinal plant extracts for antibacterial and antitumor activities. Turk J Biol 36(6):641–652

    Google Scholar 

  152. Karcioglu L et al (2011) Antimicrobial activity of Salvia trichoclada in southern Turkey. Int J Agric Biol 13:134–136

    Google Scholar 

  153. Tepe B et al (2007) Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia verticillata (L.) subsp. verticillata and S. verticillata (L.) subsp. amasiaca (Freyn & Bornm.) Bornm. Food Chem 100(3):985–989

    Article  CAS  Google Scholar 

  154. Ustun O, Sezik E (2011) Analgesic activity of Salvia wiedemannii Boiss. used in Turkish folk medicine. Rec Nat. Prod 5(4):328

    Google Scholar 

  155. Ustun O, Ozcelik B (2011) In vitro antiviral activity and cytotoxicity of the extracts of Salvia wiedemannii Boiss. Planta Med 77(12):PL23

    Google Scholar 

  156. Yiğit D, Yiğit N, Özgen U (2009) An investigation on the anticandidal activity of some traditional medicinal plants in Turkey. Mycoses 52:135–140

    Google Scholar 

  157. Orhan DD, Ozcelik B, Hosbas S et al (2012) Assessment of antioxidant, antibacterial, antimycobacterial, and antifungal activities of some plants used as folk remedies in Turkey against dermatophytes and yeast-like fungi. Turk J Biol 36:672–686. https://doi.org/10.3906/biy-1203-33

  158. Cuvelier M-E, Richard H, Berset C (1996) Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J Am Oil Chem Soc 73:645–652

    Google Scholar 

  159. Miyazawa M, Yamafuji C (2005) Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J Agric Food Chem 53:1765–1768

    Google Scholar 

  160. Kirmizibekmez H, Atay I, Kaiser M et al (2011) In vitro antiprotozoal activity of extracts of five Turkish Lamiaceae species. Nat Prod Commun 6:1697–1700

    Google Scholar 

  161. Chen F, Li L, Tian DD (2017) Salvia miltiorrhiza roots against cardiovascular disease: consideration of herb-drug interactions. Biomed Res Int. https://doi.org/10.1155/2017/9868694

  162. Uydeş-Doğan BS, Takır S, Özdemir O et al (2005) The comparison of the relaxant effects of two methoxylated flavones in rat aortic rings. Vascul Pharmacol 43:220–226. https://doi.org/10.1016/j.vph.2005.07.002

  163. Çınar ÖG, Kırmızıbekmez H, Akaydın G et al (2011) Investigation of in vitro opioid receptor binding activities of some turkish Salvia species. Rec Nat Prod 5(4)

    Google Scholar 

  164. Suntar I, Akkol EK, Senol FS et al (2011) Investigating wound healing, tyrosinase inhibitory and antioxidant activities of the ethanol extracts of Salvia cryptantha and Salvia cyanescens using in vivo and in vitro experimental models. J Ethnopharmacol 135:71–77. https://doi.org/10.1016/j.jep.2011.02.022

  165. Küpeli E, Göger F, Kosar M et al (2007) Anti-inflammatory and antinociceptive activities of Salvia halophila and Salvia virgata from Turkey. Planta Med 73:P_042

    Google Scholar 

  166. Polatoglu K, Yucel YY, Yalcin HTO et al (2015) Cytotoxic, antioxidant, iNOS, AChE. BChE inhibitory and antimicrobial activities of ethanol extract of Cyprus endemic plant Salvia veneris. Planta Med 81:1458

    Google Scholar 

  167. Topçu G, Tümen G, Kiliç T et al (2009) Bioactive Turkish plant extracts and their constituents in Innovations. Chem Biol Ed: Şener, B. 61–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülaçtı Topçu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Topçu, G., Yücer, R., Şenol, H. (2017). Bioactive Constituents of Anatolian Salvia Species. In: Georgiev, V., Pavlov, A. (eds) Salvia Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-73900-7_2

Download citation

Publish with us

Policies and ethics