Alcocer, J.P.S., Bergel, A., Valente, M.T.: Learning from source code history to identify performance failures. In: Proceedings of the 7th ACM/ SPEC International Conference on Performance Engineering (ICPE), pp. 37–48 (2016)
Google Scholar
Alexandru, C.V., Panichella, S., Gall, H.: Reducing redundancies in multi-revision code analysis. In: IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Klagenfurt (2017)
Google Scholar
Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review of the application and empirical investigation of search-based test case generation. IEEE Trans. Softw. Eng. 36(6), 742–762 (2010)
Google Scholar
Allamanis, M., Sutton, C.: Mining source code repositories at massive scale using language modeling. In: Proceedings of the 10th Working Conference on Mining Software Repositories, MSR ’13, pp. 207–216. IEEE Press, Piscataway (2013)
Google Scholar
Allamanis, M., Barr, E.T., Bird, C., Sutton, C.: Learning natural coding conventions. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2014, pp. 281–293. ACM, New York (2014)
Google Scholar
Allamanis, M., Barr, E.T., Bird, C., Sutton, C.: Suggesting accurate method and class names. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pp. 38–49. ACM, New York (2015)
Google Scholar
Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A Survey of Machine Learning for Big Code and Naturalness. arXiv e-prints, September 2017
Google Scholar
Amann, S., Proksch, S., Nadi, S.: FeedBaG: an interaction tracker for visual studio. In: International Conference on Program Comprehension. IEEE, Piscataway (2016)
Google Scholar
Amann, S., Proksch, S., Nadi, S., Mezini, M.: A study of visual studio usage in practice. In: International Conference on Software Analysis, Evolution, and Reengineering. IEEE, Piscataway (2016)
Google Scholar
Bacchelli, A., Sasso, T.D., D’Ambros, M., Lanza, M.: Content classification of development emails. In: 34th International Conference on Software Engineering, ICSE 2012, June 2–9, Zurich, pp. 375–385 (2012)
Google Scholar
Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in software testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015)
Google Scholar
Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand Reinhold Co., New York (1990)
Google Scholar
Beller, M., Gousios, G., Panichella, A., Zaidman, A.: When, how, and why developers (do not) test in their IDEs. In: Proceedings of the 10th Joint Meeting of the European Software Engineering Conference and the ACMSIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, New York (2015)
Google Scholar
Binkley, D., Lawrie, D., Hill, E., Burge, J., Harris, I., Hebig, R., Keszocze, O., Reed, K., Slankas, J.: Task-driven software summarization. In: Proceedings of the International Conference on Software Maintenance (ICSM), pp. 432–435. IEEE, Piscataway (2013)
Google Scholar
Brooks, F.P.Jr.: The Mythical Man-Month. Addison-Wesley, Reading (1975)
Google Scholar
Bruch, M., Monperrus, M., Mezini, M.: Learning from examples to improve code completion systems. In: Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp. 213–222. ACM, New York (2009)
Google Scholar
Bulej, L., Bureš, T., Horký, V., Kotrč, J., Marek, L., Trojánek, T., Tůma, P.: Unit testing performance with stochastic performance logic. Autom. Softw. Eng. 24(1), 139–187 (2017)
Google Scholar
Buse R.P.L., Weimer, W.R.: Automatically documenting program changes. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, ASE ’10, pp. 33–42. ACM, New York (2010)
Google Scholar
Campbell, J.C., Hindle, A., Amaral, J.N.: Syntax errors just aren’t natural: improving error reporting with language models. In: Proceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014, pp. 252–261. ACM, New York (2014)
Google Scholar
Ceccato, M., Marchetto, A., Mariani, L., Nguyen, C.D., Tonella, P.: Do automatically generated test cases make debugging easier? An experimental assessment of debugging effectiveness and efficiency. ACM Trans. Softw. Eng. Methodol. 25(1), 5:1–5:38 (2015)
Google Scholar
Chang, K.H., Cross II, J.H., Carlisle, W.H., Liao, S.-S.: A performance evaluation of heuristics-based test case generation methods for software branch coverage. Int. J. Softw. Eng. Knowl. Eng. 6(04), 585–608 (1996)
Google Scholar
Chen, L.: Continuous delivery: huge benefits, but challenges too. Softw. IEEE 32(2), 50–54 (2015)
Google Scholar
Chen, L.: Continuous delivery: overcoming adoption challenges. J. Syst. Softw. 128, 72–86 (2017)
Google Scholar
Chen, N., Lin, J., Hoi, S.C.H., Xiao, X., Zhang, B.: Ar-miner: mining informative reviews for developers from mobile app marketplace. In: Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pp. 767–778. ACM, New York (2014)
Google Scholar
Cito, J., Leitner, P., Fritz, T., Gall, H.C.: The making of cloud applications: an empirical study on software development for the cloud. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE), pp. 393–403. ACM, New York (2015)
Google Scholar
Cito, J., Schermann, G., Wittern, J.E., Leitner, P., Zumberi, S., Gall, H.C.: An empirical analysis of the docker container ecosystem on github. In: Proceedings of the 14th International Conference on Mining Software Repositories, MSR ’17, pp. 323–333. IEEE Press, Piscataway (2017)
Google Scholar
Ciurumelea, A., Schaufelbühl, A., Panichella, S., Gall, H.: Analyzing reviews and code of mobile apps for better release planning. In: 2017 IEEE 24th IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER), pp. 91–102 (2017)
Google Scholar
Cortes-Coy, L.F., Vásquez, M.L., Aponte, J., Poshyvanyk, D.: On automatically generating commit messages via summarization of source code changes. In: Proceedings of the International Working Conference on Source Code Analysis and Manipulation (SCAM), pp. 275–284. IEEE, Piscataway (2014)
Google Scholar
Daka, E., Campos, J., Fraser, G., Dorn, J., Weimer, W.: Modeling readability to improve unit tests. In: Proceedings of the 10th Joint Meeting of the European Software Engineering Conference and the ACMSIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, New York (2015)
Google Scholar
D’Ambros, M., Lanza, M., Robbes, R.: Commit 2.0. In: Proceedings of the 1st Workshop on Web 2.0 for Software Engineering, Web2SE ’10, pp. 14–19. ACM, New York (2010)
Google Scholar
D’Ambros, M., Lanza, M., Robbes, R.: Evaluating defect prediction approaches: a benchmark and an extensive comparison. Empir. Softw. Eng. 17(4–5), 531–577 (2012)
Google Scholar
Damevski, K., Shepherd, D., Schneider, J., Pollock, L.: Mining sequences of developer interactions in visual studio for usage smells. IEEE Trans. Softw. Eng. 43(4), 359–371 (2016)
Google Scholar
De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Using IR methods for labeling source code artifacts: is it worthwhile? In: IEEE 20th International Conference on Program Comprehension, ICPC 2012, Passau, June 11–13, 2012, pp. 193–202 (2012)
Google Scholar
De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Labeling source code with information retrieval methods: an empirical study. Empir. Softw. Eng. 19(5), 1383–1420 (2014)
Google Scholar
de Oliveira, A.B., Fischmeister, S., Diwan, A., Hauswirth, M., Sweeney, P.: Perphecy: performance regression test selection made simple but effective. In: Proceedings of the 10th IEEE International Conference on Software Testing, Verification and Validation (ICST), Tokyo (2017)
Google Scholar
Di Sorbo, A., Panichella, S., Visaggio, C.A., Di Penta, M., Canfora, G., Gall, H.C.: Development emails content analyzer: intention mining in developer discussions. In: 2015, 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 12–23. IEEE, Washington (2015)
Google Scholar
Di Sorbo, A., Panichella, S., Alexandru, C., Shimagaki, J., Visaggio, C.A., Canfora, G., Gall, H.C.: What would users change in my app? summarizing app reviews for recommending software changes. In: 2016 ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE), pp. 499–510 (2016)
Google Scholar
Di Sorbo, A., Panichella, S., Alexandru, C.V., Visaggio, C.A., Canfora, G.: Surf: summarizer of user reviews feedback. In: Proceedings of the 39th International Conference on Software Engineering Companion, pp. 55–58. IEEE Press, Piscataway (2017)
Google Scholar
Dias, M., Cassou, D., Ducasse, S.: Representing code history with development environment events. In: International Workshop on Smalltalk Technologies (2013)
Google Scholar
Dyer, R.: Bringing ultra-large-scale software repository mining to the masses with Boa. PhD thesis, Ames (2013). AAI3610634
Google Scholar
Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The evolution of continuous experimentation in software product development. In: International Conference on Software Engineering, ICSE, Buenos Aires (2017)
Google Scholar
Ferguson, R., Korel, B.: The chaining approach for software test data generation. ACM Trans. Softw. Eng. Methodol. 5(1), 63–86 (1996)
Google Scholar
Fluri, B., Wuersch, M., PInzger, M., Gall, H.: Change distilling: tree differencing for fine-grained source code change extraction. IEEE Trans. Softw. Eng. 33(11), 725–743 (2007)
Google Scholar
Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, ESEC/FSE ’11, pp. 416–419. ACM, New York (2011)
Google Scholar
Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2), 276–291 (2013)
Google Scholar
Fraser, G., Arcuri, A.: 1600 faults in 100 projects: automatically finding faults while achieving high coverage with evosuite. Empir. Softw. Eng. 20(3), 611–639 (2015)
Google Scholar
Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated white-box test generation really help software testers? In: Proceedings of the International Symposium on Software Testing and Analysis (ISSTA), pp. 291–301. ACM, New York (2013)
Google Scholar
Gall, H.C., Fluri, B., Pinzger, M.: Change analysis with evolizer and changedistiller. Software, IEEE 26(1), 26–33 (2009)
Google Scholar
Gallagher, M.J., Lakshmi Narasimhan, V: Adtest: a test data generation suite for ada software systems. IEEE Trans. Softw. Eng. 23(8), 473–484 (1997)
Google Scholar
Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance evaluation. In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications, OOPSLA ’07, pp. 57–76. ACM, New York (2007)
Google Scholar
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)
Google Scholar
Grano, G., Di Sorbo, A., Mercaldo, F., Aaron Visaggio, C., Canfora, G., Panichella, S.: Android apps and user feedback: a dataset for software evolution and quality improvement. In: Proceedings of the 2nd ACM SIGSOFT International Workshop on App Market Analytics, WAMA@ESEC/SIGSOFT FSE 2017, Paderborn, September 5, 2017, pp. 8–11 (2017)
Google Scholar
Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment analysis of app reviews. In: 2014 IEEE 22nd International Requirements Engineering Conference (RE), pp. 153–162 (2014)
Google Scholar
Ha, E., Wagner, D.: Do android users write about electric sheep? Examining consumer reviews in google play. In: Consumer Communications and Networking Conference (CCNC), 2013 IEEE, pp. 149–157 (2013)
Google Scholar
Hahn, U., Mani, I.: The challenges of automatic summarization. Computer 33(11), 29–36 (2000)
Google Scholar
Haiduc, S., Aponte, J., Moreno, L., Marcus, A.: On the use of automated text summarization techniques for summarizing source code. In: Proceedings of the International Working Conference on Reverse Engineering (WCRE), pp. 35–44. IEEE, New York (2010)
Google Scholar
Hammad, M., Abuljadayel, A., Khalaf, M.: Automatic summarising: the state of the art. Lect. Notes Softw. Eng. 4(2), 129–132 (2016)
Google Scholar
Heger, C., Happe, J., Farahbod, R.: Automated root cause isolation of performance regressions during software development. In: Proceedings of the 4th ACM/SPEC International Conference on Performance Engineering, ICPE ’13, pp. 27–38. ACM, New York (2013)
Google Scholar
Hellendoorn, V.J., Devanbu, P.T., Bacchelli, A.: Will they like this? Evaluating code contributions with language models. In: Proceedings of the 12th Working Conference on Mining Software Repositories, MSR ’15, pp. 157–167. IEEE Press, Piscataway (2015)
Google Scholar
Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.: On the naturalness of software. In: Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, pp. 837–847. IEEE Press, Piscataway (2012)
Google Scholar
Huang, P., Ma, X., Shen, D., Zhou, Y.: Performance regression testing target prioritization via performance risk analysis. In: Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pp. 60–71. ACM, New York (2014)
Google Scholar
Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation. Addison-Wesley Professional, Reading (2010)
Google Scholar
Iacob, C., Harrison, R.: Retrieving and analyzing mobile apps feature requests from online reviews. In: Proceedings of the 10th Working Conference on Mining Software Repositories, MSR’13, pp. 41–44. IEEE Press, Piscataway (2013)
Google Scholar
Jin, G., Song, L., Shi, X., Scherpelz, J., Lu, S.: Understanding and detecting real-world performance bugs. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12, pp. 77–88. ACM, New York (2012)
Google Scholar
Kamimura, M., Murphy, G.C.: Towards generating human-oriented summaries of unit test cases. In: Proceedings of the International Conference on Program Comprehension (ICPC), May, pp. 215–218. IEEE, Piscataway (2013)
Google Scholar
Kerzazi, N., Khomh, F., Adams, B.: Why do automated builds break? An empirical study. In: 30th IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 41–50. IEEE, Piscataway (2014)
Google Scholar
Kim, J., You, B., Kwon, M., McMinn, P., Yoo, S.: Evaluating CAVM: a new search-based test data generation tool for C. In: International Symposium on Search-Based Software Engineering (SSBSE 2017) (2017)
Google Scholar
Ko, A.J., Myers, B.A., Aung, H.H.: Six learning barriers in end-user programming systems. In: 2004 IEEE Symposium on Visual Languages and Human Centric Computing, pp. 199–206. IEEE, Washington (2004)
Google Scholar
Kocaguneli, E., Menzies, T., Keung, J.W.: On the value of ensemble effort estimation. IEEE Trans. Softw. Eng. 38(6), 1403–1416 (2012)
Google Scholar
Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., Pohlmann, N.: Online controlled experiments at large scale. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1168–1176. ACM, New York (2013)
Google Scholar
Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: A Language-Agnostic Semantic Diff Tool for Imperative Programs, pp. 712–717. Springer, Berlin (2012)
Google Scholar
Lakhotia, K., Harman, M., Gross, H. (2013) Austin: an open source tool for search based software testing of C programs. Inf. Softw. Technol. 55(1), 112–125 (2013)
Google Scholar
Leitner, P., Bezemer, C.-P.: An exploratory study of the state of practice of performance testing in java-based open source projects. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, ICPE ’17, pp. 373–384. ACM, New York (2017)
Google Scholar
Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On automatically classifying app reviews. In: 2015 IEEE 23rd International Requirements Engineering Conference (RE), August, pp. 116–125 (2015)
Google Scholar
McBurney, P.W., McMillan, C.: Automatic documentation generation via source code summarization of method context. In: Proceedings of the International Conference on Program Comprehension (ICPC), pp. 279–290. ACM, New York (2014)
Google Scholar
McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action: Covers Apache Lucene 3.0. Manning Publications Co., Greenwich (2010)
Google Scholar
McMinn, P.: Search-based software testing: past, present and future. In: Proceedings of the 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops, ICSTW ’11, pp. 153–163. IEEE Computer Society, Washington (2011)
Google Scholar
Mende, T., Koschke, R.: Revisiting the evaluation of defect prediction models. In: Proceedings of the 5th International Conference on Predictor Models in Software Engineering, PROMISE ’09, pp. 7:1–7:10. ACM, New York (2009)
Google Scholar
Minelli, R., Mocci, A., Robbes, R., Lanza, M.: Taming the ide with fine-grained interaction data. In: International Conference on Program Comprehension (2016)
Google Scholar
Moreno, L., Marcus, A.: Automatic software summarization: the state of the art. In: Proceedings of the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires, May 20–28, 2017—Companion Volume, pp. 511–512 (2017)
Google Scholar
Moreno, L., Aponte, J., Sridhara, G., Marcus, A., Pollock, L., Vijay-Shanker, K.: Automatic generation of natural language summaries for java classes. In: Proceedings of the International Conference on Program Comprehension (ICPC), May, pp. 23–32. IEEE, Piscataway (2013)
Google Scholar
Moreno, L., Bavota, G., Di Penta, M., Oliveto, R., Marcus, A., Canfora, G.: Automatic generation of release notes. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong, November 16–22, 2014, pp. 484–495 (2014)
Google Scholar
Moritz, E., Linares-Vásquez, M., Poshyvanyk, D., Grechanik, M., McMillan, C., Gethers, M.: Export: detecting and visualizing API usages in large source code repositories. In: Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering, pp. 646–651. IEEE Press, Piscataway (2013)
Google Scholar
Murphy, G.C.: Lightweight structural summarization as an aid to software evolution. PhD thesis (1996). AAI9704521
Google Scholar
Murphy, G.C., Kersten, M., Findlater, L.: How are java software developers using the eclipse IDE? IEEE Softw. 23(4), 76–83 (2006)
Google Scholar
Nazar, N., Hu, Y., Jiang, H.: Summarizing software artifacts: a literature review. J. Comput. Sci. Technol. 31(5), 883–909 (2016)
Google Scholar
Negara, S., Vakilian, M., Chen, N., Johnson, R.E., Dig, D.: Is it dangerous to use version control histories to study source code evolution? In: European Conference on Object-Oriented Programming, pp. 79–103. Springer, Heidelberg (2012)
Google Scholar
Palomba, F., Salza, P., Ciurumelea, A., Panichella, S., Gall, H.C., Ferrucci, F., De Lucia, A.: Recommending and localizing change requests for mobile apps based on user reviews. In: Proceedings of the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires, May 20–28, pp. 106–117 (2017)
Google Scholar
Panichella, S., Aponte, J., Di Penta, M., Marcus, A., Canfora, G.: Mining source code descriptions from developer communications. In: Proceedings of the International Conference on Program Comprehension, ICPC, pp. 63–72. IEEE, Los Alamitos (2012)
Google Scholar
Panichella, S., Bavota, G., Di Penta, M., Canfora, G., Antoniol, G.: How developers’ collaborations identified from different sources tell us about code changes. In: 30th IEEE International Conference on Software Maintenance and Evolution, Victoria, September 29–October 3, pp. 251–260 (2014)
Google Scholar
Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a many-objective optimization problem. In: ICST, pp. 1–10. IEEE Computer Society, Washington (2015)
Google Scholar
Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C.A., Canfora, G., Gall, H.C.: How can I improve my app? Classifying user reviews for software maintenance and evolution. In: 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 281–290 (2015)
Google Scholar
Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C.A., Canfora, G., Gall, G., Gall, H.C.: Ardoc: app reviews development oriented classifier. In: 2016 ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE), pp. 1023–1027 (2016)
Google Scholar
Panichella, S., Panichella, A., Beller, M., Zaidman, A., Gall, H.C.: The impact of test case summaries on bug fixing performance: an empirical investigation. In: Proceedings of the 38th International Conference on Software Engineering, ICSE ’16, pp. 547–558. ACM, New York (2016)
Google Scholar
Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., Lanza, M.: Prompter: a self-confident recommender system. In: 2014 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 577–580. IEEE, Victoria (2014)
Google Scholar
Ponzanelli, L., Mocci, A., Lanza, M.: Summarizing complex development artifacts by mining heterogeneous data. In: Proceedings of the 12th Working Conference on Mining Software Repositories, MSR ’15, pp. 401–405. IEEE Press, Piscataway (2015)
Google Scholar
Proksch, S., Bauer, V., Murphy, G.C.: How to build a recommendation system for software engineering. In: Software Engineering. Springer, Berlin (2015)
Google Scholar
Proksch, S., Lerch, J., Mezini, M.: Intelligent code completion with Bayesian networks. Trans. Softw. Eng. Methodol. 25(1), 3 (2015)
Google Scholar
Proksch, S., Amann, S., Nadi, S., Mezini, M.: Evaluating the evaluations of code recommender systems: a reality check. In: International Conference on Automated Software Engineering. ACM, New York (2016)
Google Scholar
Proksch, S., Amann, S., Nadi, S.: Enriched event streams: a general dataset for empirical studies on in-IDE activities of software developers. In: International Conference on Mining Software Repositories (accepted Mining Challenge) (2017)
Google Scholar
Proksch, S., Nadi, S., Amann, S., Mezini, M.: Enriching in-IDE process information with fine-grained source code history. In: International Conference on Software Analysis, Evolution, and Reengineering (2017)
Google Scholar
Radevski, S., Hata, H., Matsumoto, K.: Towards building api usage example metrics. In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 619–623. IEEE, Piscataway (2016)
Google Scholar
Rastkar, S., Murphy, G.C., Murray, G.: Summarizing software artifacts: a case study of bug reports. In: Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering - volume 1, ICSE ’10, pp. 505–514 (2010)
Google Scholar
Rastkar, S., Murphy, G.C., Murray, G.: Automatic summarization of bug reports. IEEE Trans. Softw. Eng. 40(4), 366–380 (2014)
Google Scholar
Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., Devanbu, P.: On the “naturalness” of buggy code. In: Proceedings of the 38th International Conference on Software Engineering, ICSE ’16, pp. 428–439. ACM, New York (2016)
Google Scholar
Robillard, M.P.: What makes APIs hard to learn? Answers from developers. IEEE Softw. 26(6), 27–39 (2009)
Google Scholar
Rojas, J.M., Fraser, G., Arcuri, A.: Automated unit test generation during software development: a controlled experiment and think-aloud observations. In: Proceedings of the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015, pp. 338–349. ACM, New York (2015)
Google Scholar
Saied, M.A., Benomar, O., Abdeen, H., Sahraoui, H.: Mining multi-level api usage patterns. In: 2015 IEEE 22nd International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 23–32. IEEE, Piscataway (2015)
Google Scholar
Saied, M.A., Benomar, O., Abdeen, H., Sahraoui, H.: Mining multi-level api usage patterns. In: 2015 IEEE 22nd International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 23–32. IEEE, Piscataway (2015)
Google Scholar
Scalabrino, S., Grano, G., Di Nucci, D., Oliveto, R., De Lucia, A.: Search-based testing of procedural programs: iterative single-target or multi-target approach? In: Search Based Software Engineering, October, pp. 64–79. Springer, Cham (2016)
Google Scholar
Schermann, G., Cito, J., Leitner, P., Gall, H.C.: Towards quality gates in continuous delivery and deployment. In: 2016 IEEE 24th International Conference on Program Comprehension (ICPC), pp. 1–4. IEEE, Piscataway (2016)
Google Scholar
Schermann, G., Schöni, D., Leitner, P., Gall, H.C.: Bifrost: supporting continuous deployment with automated enactment of multi-phase live testing strategies. In: Proceedings of the 17th International Middleware Conference, pp. 12:1–12:14. ACM, New York (2016)
Google Scholar
Schermann, G., Cito, J., Leitner, P., Zdun, U., Gall, H.C.: We’re doing it live: an empirical study on continuous experimentation. J. Inf. Softw. Technol. (2017, under submission)
Google Scholar
Spärck Jones, K.: Automatic summarising: the state of the art. Inf. Process. Manage. 43(6), 1449–1481 (2007)
Google Scholar
Sridhara, G.: Automatic generation of descriptive summary comments for methods in object-oriented programs. PhD thesis, Newark (2012). AAI3499878
Google Scholar
Sridhara, G., Hill, E., Muppaneni, D., Pollock, L., Vijay-Shanker, K.: Towards automatically generating summary comments for java methods. In: Proceedings of the International Conference on Automated Software Engineering (ASE), pp. 43–52. ACM, Piscataway (2010)
Google Scholar
Sridhara, G., Pollock, L., Vijay-Shanker, K.: Automatically detecting and describing high level actions within methods. In: Proceedings of the International Conference on Software Engineering (ICSE), pp. 101–110. IEEE, Piscataway (2011)
Google Scholar
Sridhara, G., Pollock, L., Vijay-Shanker, K.: Generating parameter comments and integrating with method summaries. In: Proceedings of the International Conference on Program Comprehension (ICPC), pp. 71–80. IEEE, Piscataway (2011)
Google Scholar
Stefan, P., Horky, V., Bulej, L., Tuma, P.: Unit testing performance in java projects: are we there yet? In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, ICPE ’17, pp. 401–412. ACM, New York (2017)
Google Scholar
Tu, Z., Su, Z., Devanbu, P.: On the localness of software. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2014, pp. 269–280. ACM, New York (2014)
Google Scholar
VanHilst, M., Huang, S., Mulcahy, J., Ballantyne, W., Suarez-Rivero, E., Harwood, D.: Measuring effort in a corporate repository. In: IRI, pp. 246–252. IEEE Systems, Man, and Cybernetics Society, Piscataway (2011)
Google Scholar
Vassallo, C., Panichella, S., Di Penta, M., Canfora, G.: Codes: mining source code descriptions from developers discussions. In: Proceedings of the International Conference on Program Comprehension (ICPC), pp. 106–109. ACM, New York (2014)
Google Scholar
Vassallo, C., Zampetti, F., Romano, D., Beller, M., Panichella, A., Di Penta, M., Zaidman, A.: Continuous delivery practices in a large financial organization. In: 2016 IEEE International Conference on Software Maintenance and Evolution, ICSME 2016, Raleigh, October 2–7, 2016, pp. 519–528 (2016)
Google Scholar
Vassallo, C., Schermann, G., Zampetti, F., Romano, D., Leitner, P., Zaidman, A., Di Penta, M., Panichella, S.: A tale of ci build failures: an open source and a financial organization perspective (2017)
Google Scholar
Vithani, T.: Modeling the mobile application development lifecycle. In: Proceedings of the International MultiConference of Engineers and Computer Scientists 2014, vol. I, IMECS 2014, pp. 596–600 (2014)
Google Scholar
Wong, E., Yang, J., Tan, L.: Autocomment: mining question and answer sites for automatic comment generation. In: Proceedings of the International Conference on Automated Software Engineering (ASE), pp. 562–567. IEEE, Piscataway (2013)
Google Scholar
Wu, H.C., Luk, R.W.P., Wong, K.F., Kwok, K.L.: Interpreting tf-idf term weights as making relevance decisions. ACM Trans. Inf. Syst. (TOIS) 26(3), 13 (2008)
Google Scholar
Xie, T., Pei, J.: Mapo: mining api usages from open source repositories. In: Proceedings of the 2006 International Workshop on Mining Software Repositories, pp. 54–57. ACM, New York (2006)
Google Scholar
Zagalsky, A., Barzilay, O., Yehudai, A.: Example overflow: using social media for code recommendation. In: Proceedings of the Third International Workshop on Recommendation Systems for Software Engineering, pp. 38–42. IEEE Press, Piscataway (2012)
Google Scholar
Zhou, Y., Gu, R., Chen, T., Huang, Z., Panichella, S., Gall, H.C.: Analyzing apis documentation and code to detect directive defects. In: Proceedings of the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires, May 20–28, 2017, pp. 27–37 (2017)
Google Scholar