Skip to main content

Amorphous Silicon-Boron-Nitride Networks

  • Chapter
  • First Online:
Nano-scale Heat Transfer in Nanostructures

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 763 Accesses

Abstract

In recent years, atomistic simulations are assuming a guiding role in the effort of optimizing the properties of advanced coating materials (Lawson et al., J Appl Phys 110:083507, 2011; Kindlund et al., APL Mater 1:042104, 2013; Tang et al., J Phys Chem C 119:24649–24656, 2015; Zhang et al., Surf Coat Technol 277:136–143, 2015; Ni et al., Appl Phys Lett 107:031603, 2015). In amorphous Silicon-Boron-Nitride networks (a-Si-B-N), understanding the role played by composition is of great importance for the future design of this new material. So far, a-Si-B-N structures have been explored to understand the impact of the BN:Si3N4 ratio onto mechanical properties (Tang et al., Chem Eur J 16:6458–6462, 2010; Schön et al., Process Appl Ceram 5:49–61, 2011; Griebel and Hamaekers, Comput Mater Sci 39:502–517, 2007; Ge et al., Adv Appl Ceram 113:367–371, 2014). Using classical molecular dynamics (MD) simulations, Griebel and Hamaekers (Comput Mater Sci 39:502–517, 2007) derived strain-stress curves of selected a-Si3BN5, a-Si3B2N6, and a-Si3B3N7 models and found that increasing the B content increases Young’s modulus. In this chapter, we extend the scope of the previous studies by revealing how composition and structure might influence a combination of properties desirable for coating applications. Using a combination of atomistic numerical methods, we screen a library of low enthalpy a-Si-B-N networks (a-Si3BN5, a-Si3B3N7, and a-Si3B9N13) to predict from extensive atomistic simulations the thermal conductivity (κ) and mechanical stiffness with different BN contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawson JW, Daw MS, Bauschlicher CW Jr (2011) Lattice thermal conductivity of ultra high temperature ceramics ZrB2 and HfB2 from atomistic simulations. J Appl Phys 110:083507

    Article  Google Scholar 

  2. Kindlund H et al (2013) Toughness enhancement in hard ceramic thin films by alloy design. APL Mater 1:042104

    Article  Google Scholar 

  3. Tang B, An Q, Goddard III, A W (2015) Improved ductility of boron carbide by microalloying with boron suboxide. J Phys Chem C 119:24649–24656

    Article  Google Scholar 

  4. Zhang K et al (2015) Epitaxial NbCxN 1− x (001) layers: growth, mechanical properties, and electrical resistivity. Surf Coat Technol 277:136–143

    Article  Google Scholar 

  5. Ni Y, Jiang J, Meletis E, Dumitricǎ T (2015) Thermal transport across few-layer boron nitride encased by silica. Appl Phys Lett 107:031603

    Article  Google Scholar 

  6. Tang Y et al (2010) Polymer-derived SiBN fiber for high-temperature structural/functional applications. Chem Eur J 16:6458–6462

    Article  Google Scholar 

  7. Schön JC, Hannemann A, Sethi G, Pentin VI, Jansen M (2011) Modelling structure and properties of amorphous silicon boron nitride ceramics. Process Appl Ceram 5:49–61

    Article  Google Scholar 

  8. Griebel M, Hamaekers J (2007) Molecular dynamics simulations of boron-nitride nanotubes embedded in amorphous Si-BN. Comput Mater Sci 39:502–517

    Article  Google Scholar 

  9. Ge K, Ye L, Han W, Han Y, Zhao T (2014) Pyrolysis of polyborosilazane and its conversion into SiBN ceramic. Adv Appl Ceram 113:367–371

    Article  Google Scholar 

  10. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  MATH  Google Scholar 

  11. Matsunaga K, Iwamoto Y (2001) Molecular dynamics study of atomic structure and diffusion behavior in amorphous silicon nitride containing boron. J Am Ceram Soc 84:2213–2219

    Article  Google Scholar 

  12. Kroll P, Hoffmann R (1998) Silicon boron nitrides: hypothetical polymorphs of Si3B3N7. Angew Chem Int Ed 37:2527–2530

    Article  Google Scholar 

  13. Dumitrică T, Yakobson BI (2005) Rate theory of yield in boron nitride nanotubes. Phys Rev B 72:035418

    Article  Google Scholar 

  14. Jansen M, Schön JC, van Wüllen L (2006) The route to the structure determination of amorphous solids: a case study of the ceramic Si3B3N7. Angew Chem Int Ed 45:4244–4263

    Article  Google Scholar 

  15. Kroll P (2005) Modelling polymer-derived ceramics. J Eur Ceram Soc 25:163–174

    Article  Google Scholar 

  16. Jalowiecki A, Bill J, Aldinger F, Mayer J (1996) Interface characterization of nanosized B-doped Si3N4/SiC ceramics. Compos Part Appl Sci Manuf 27:717–721

    Article  Google Scholar 

  17. Esfarjani K, Chen G, Stokes HT (2011) Heat transport in silicon from first-principles calculations. Phys Rev B 84:085204

    Article  Google Scholar 

  18. Chaplot SL, Mittal R, Choudhury N (2010) Thermodynamic properties of solids: experiments and modeling. John Wiley & Sons, Weinheim

    Book  Google Scholar 

  19. Capilla J et al. Characterization of amorphous tantalum oxide for insulating acoustic mirrors. In 1–6 (IEEE, 2011)

    Google Scholar 

  20. Testardi L, Hauser J (1977) Sound velocity in amorphous Ge and Si. Solid State Commun 21:1039–1041

    Article  Google Scholar 

  21. Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163:67–74

    Article  Google Scholar 

  22. Cahill DG, Watson SK, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46:6131

    Article  Google Scholar 

  23. Simpson A, Stuckes A (1971) The thermal conductivity of highly oriented pyrolytic boron nitride. J Phys C Solid State Phys 4:1710

    Article  Google Scholar 

  24. He J et al (2013) Microstructure characterization of high-temperature, oxidation-resistant Si-BCN films. Thin Solid Films 542:167–173

    Article  Google Scholar 

  25. Jäschke T, Jansen M (2004) Synthesis and characterization of new amorphous Si/B/N/C ceramics with increased carbon content through single-source precursors. Comptes Rendus Chim 7:471–482

    Article  Google Scholar 

  26. Zhang M et al (2014) A study of the microstructure evolution of hard Zr–B–C–N films by high-resolution transmission electron microscopy. Acta Mater 77:212–222

    Article  Google Scholar 

  27. Zhang M et al (2015) Effect of the Si content on the microstructure of hard, multifunctional Hf–B–Si–C films prepared by pulsed magnetron sputtering. Appl Surf Sci 357:1343–1354

    Article  Google Scholar 

  28. Kalweit M, Drikakis D (2008) Multiscale methods for micro/nano flows and materials. J Comput Theor Nanosci 5:1923–1938

    Article  Google Scholar 

  29. Asproulis N, Kalweit M, Drikakis D (2012) A hybrid molecular continuum method using point wise coupling. Adv Eng Softw 46:85–92

    Article  Google Scholar 

  30. Al-Ghalith J et al (2016) Compositional and structural atomistic study of amorphous Si–B–N networks of interest for high-performance coatings. J Phys Chem C 120:24346–24353

    Article  Google Scholar 

Download references

Acknowledgments

Figures and tables in this chapter are all reprinted from Ref., [30] Copyright 2016 American Chemical Society.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Ghalith, J., Dumitrica, T. (2018). Amorphous Silicon-Boron-Nitride Networks. In: Nano-scale Heat Transfer in Nanostructures. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-73882-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73882-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73881-9

  • Online ISBN: 978-3-319-73882-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics