Skip to main content

Divergence Measures: From Uncertainty to Imprecision

  • Chapter
  • First Online:
The Mathematics of the Uncertain

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 142))

  • 1440 Accesses

Abstract

The link between information theory and fuzzy logic has been proven in several previous papers. From this starting point, we propose here a review about the concept of divergence measures, which was proposed as a tool for comparing two fuzzy sets. The initial definition comes from the ideas behind the classical concept of divergence between two probability distributions. Following a path similar to the one considered to obtain fuzziness measures from uncertainty measures, we are able to define fuzzy divergences. Apart from that, some possible generalizations are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouchon-Meunier B, Rifqi M, Bothorel S (1996) Towards general measures of comparison of objects. Fuzzy Sets Syst 84:143–153

    Article  MathSciNet  MATH  Google Scholar 

  2. Couso I, Montes S (2008) An axiomatic definition of fuzzy divergence measures. Int J Uncertain Fuzziness Knowl Based Syst 16(1):1–17

    Article  MathSciNet  MATH  Google Scholar 

  3. Couso I, Gil P (1998) Characterization of a family of entropy measures. In: Proceedings of IPMU’98. Editions EDK, Paris

    Google Scholar 

  4. Couso I, Garrido L, Sánchez L (2013) Similarity and dissimilarity measures between fuzzy sets: a formal relational study. Inform Sci 229:122–141

    Article  MathSciNet  MATH  Google Scholar 

  5. De Luca A, Termini S (1972) A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Inf Control 20:301–312

    Article  MathSciNet  MATH  Google Scholar 

  6. Dubois D, Prade H (1980) Fuzzy sets and systems: theory and applications. Academic Press, New York

    MATH  Google Scholar 

  7. Gil P (1981) Teoría Matemática de la Información. ICE, Madrid

    Google Scholar 

  8. Gil MA, Gil P (2015) Randomness and fuzziness: combined better than unified. In: Magdalena L, Verdegay JL, Esteva F (eds) Enric trillas: a passion for fuzzy sets, studies in fuzziness and soft computing, vol 322. Springer, Cham

    Google Scholar 

  9. Gil MA, López MT, Gil P (1985) Quantity of information; comparison between information systems: 1. Non-fuzzy states. Fuzzy Sets Syst 15:65–78

    Article  MATH  Google Scholar 

  10. Gil MA, López MT, Gil P (1985) Quantity of information; comparison between information systems: 2. Fuzzy states. Fuzzy Sets Syst 15:129–145

    Article  MathSciNet  MATH  Google Scholar 

  11. Havrda J, Charvát F (1967) Quantification method of classification processes. Concept of structural \(\alpha \)-entropy. Kybernetika 3(1):30–35

    Google Scholar 

  12. Kampé de Fériet J, Forte B (1967) Information et probabilité. CR Acad Sci Paris Ser A 265:110–114, 142–146, 350–353

    Google Scholar 

  13. Klir GJ, Folger TA (1988) Fuzzy sets, uncertainty, and information. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  14. Knopfmacher J (1975) On measures of fuzziness. J Math Anal Appl 49:529–534

    Article  MathSciNet  MATH  Google Scholar 

  15. Kobza V, Janis V, Montes S (2017) Generalizated local divergence measures. J Intel Fuzzy Syst 33:337–350

    Article  MATH  Google Scholar 

  16. Kobza V, Janis V, Montes S (2017) Divergence measures on hesitant fuzzy sets. J Intel Fuzzy Syst 33:1589–1601

    Article  MATH  Google Scholar 

  17. Kullback S (1959) Information theory and statistics. Wiley, New York

    MATH  Google Scholar 

  18. Lui X (1992) Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets Syst 52:305–318

    Article  MathSciNet  Google Scholar 

  19. Menéndez ML, Morales D, Pardo L, Salicrú M (1993) Asymptotic distribution of \((h,\phi )\)-entropies. Commun Stat Theory Meth 22(7):2015–2031

    Google Scholar 

  20. Montes S, Gil P (1998) Some classes of divergence measures between fuzzy subsets and between fuzzy partitions. Mathw Soft Comput 5:253–265

    MathSciNet  MATH  Google Scholar 

  21. Montes S, Couso I, Bertoluzza C (1998) Some classes of fuzziness measures from local divergences. Belg J Oper Res Stat Comput Sci 38:37–49

    MathSciNet  MATH  Google Scholar 

  22. Montes S, Gil P, Bertoluzza C (1998) Divergence between fuzzy sets and fuzziness. In: Proceedings of IPMU’98. Editions EDK, Paris

    Google Scholar 

  23. Montes S, Couso I, Gil P, Bertoluzza C (2002) Divergence measures between fuzzy sets. Int J Approx Reason 30(2):91–105

    Article  MathSciNet  MATH  Google Scholar 

  24. Montes S, Couso I, Jimenez J, Gil P (2005) Las medidas de incertidumbre probabilística y no probabilística como herramienta en la comparación de conjuntos. In: Volumen homenaje al Profesor Ildefonso Yáñez de Diego. UNED, Madrid

    Google Scholar 

  25. Montes I, Pal N, Janis V, Montes S (2015) Divergence measures for intuitionistic fuzzy sets. IEEE Trans Fuzzy Syst 23(2):444–456

    Article  Google Scholar 

  26. Montes I, Pal N, Janis V, Montes S (2016) Local divergences for Atanassov intuitionistic fuzzy sets. IEEE Trans Fuzzy Syst 24(2):360–373

    Article  Google Scholar 

  27. Oniçescu O (1966) Theorie de l’information. Energie informationelle. CR Acad Sci Paris Ser A 263:841–842

    Google Scholar 

  28. Pardo L (1997) Teoría de la Información Estadística. Hespérides, Salamanca

    Google Scholar 

  29. Pardo L (2006) Statistical inference based on divergence measures. Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  30. Rényi A (1966) Calcul des Probabilitiés. Dunod, Paris

    MATH  Google Scholar 

  31. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    Article  MathSciNet  MATH  Google Scholar 

  32. Sharma BD, Mittal DP (1975) New nonadditive measures of entropy for discrete probability distributions. J Math Sci 10:28–40

    MathSciNet  Google Scholar 

  33. Trillas E, Riera T (1978) Entropies in finite fuzzy sets. Inf Sci 15:159–168

    Article  MathSciNet  MATH  Google Scholar 

  34. Zadeh L (1965) Fuzzy sets. Inf Contr 8:338–353

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the help and support of Prof. Gil to initiate us to the wonderful world of research. He used to say he was our scientific father and we are honored he really was.

    From the economical point of view, this work was partially supported by the research project TIN2014-59543-P (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Montes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montes, S., Díaz, S., Martinetti, D. (2018). Divergence Measures: From Uncertainty to Imprecision. In: Gil, E., Gil, E., Gil, J., Gil, M. (eds) The Mathematics of the Uncertain. Studies in Systems, Decision and Control, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-319-73848-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73848-2_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73847-5

  • Online ISBN: 978-3-319-73848-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics