A Generalized SMT-Based Framework for Diffusion MRI Microstructural Model Estimation

  • Mauro Zucchelli
  • Maxime Descoteaux
  • Gloria Menegaz
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


Diffusion Magnetic Resonance Imaging (DMRI) has been widely used to characterize the principal directions of white matter fibers, also known as fiber Orientation Distribution Function (fODF), and axonal density in brain tissues.

Recently, different multi-compartment models have been proposed allowing the joint estimation of both the fODF and axonal densities following different approaches. In this work, the problem has been cast in a unified framework using the Spherical Mean Technique (SMT), where the presence of multiple compartments is accounted for and the fODF is expressed in a parametric form allowing the estimation of the whole set of parameters. In this formulation, the fODF is expressed by its Spherical Harmonics (SH) representation and different multi-compartment models can be easily plugged in, enabling a structured and simple comparison of the respective performance.

Starting from a general multi-compartment formulation, four simplified two-parameters models are considered: Fiber ORientation Estimated using Continuous Axially Symmetric Tensors (FORECAST), Multi Compartment Microscopic Diffusion Imaging (MC-MDI), Neurite Orientation Dispersion and Density Imaging (NODDI), and Ball & Stick (BS). Their performances are compared against a synthetic ground truth evaluating the precision in the estimation of the intra-axonal volume fraction and the signal reconstruction error as well as the ability of the estimated fODF of capturing the fiber configuration. Results show that good parameter estimation can be reached with simplified two-parameters models, and highlight a different behavior for models where intra-axonal diffusivity is considered as a free parameter in terms of both axonal density and fODF estimation. This result suggests that although the intra-axonal volume fraction map estimated from human brain may be not completely accurate, it still mirrors the underlying tissue microstructure. The proposed formulation, relying on SMT and SH representation, allows unifying several microstructural models proposed in diffusion MRI literature under the same mathematical framework, providing the mean for easily comparing different models while highlighting their similarities and differences, and could be used as a reference for model selection on in vivo data.


  1. 1.
    Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn. Reson. Med. 54(5), 1194–1206 (2005)CrossRefGoogle Scholar
  2. 2.
    Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R., Clare, S., Matthews, P., Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50(5), 1077–1088 (2003)CrossRefGoogle Scholar
  3. 3.
    Cheng, J., Deriche, R., Jiang, T., Shen, D., Yap, P.T.: Non-negative spherical deconvolution (NNSD) for estimation of fiber orientation distribution function in single-/multi-shell diffusion {MRI}. NeuroImage 101, 750–764 (2014)CrossRefGoogle Scholar
  4. 4.
    Daducci, A., Canales-Rodrguez, E.J., Descoteaux, M., Garyfallidis, E., Gur, Y., Lin, Y.C., Mani, M., Merlet, S., Paquette, M., Ramirez-Manzanares, A., Reisert, M., Rodrigues, P.R., Sepehrband, F., Caruyer, E., Choupan, J., Deriche, R., Jacob, M., Menegaz, G., Prčkovska, V., Rivera, M., Wiaux, Y., Thiran, J.P.: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI. IEEE Trans. Med. Imaging 33(2), 384–399 (2014)CrossRefGoogle Scholar
  5. 5.
    Descoteaux, M., Deriche, R., Knosche, T.R., Anwander, A.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imaging 28(2), 269–286 (2009)CrossRefGoogle Scholar
  6. 6.
    Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., Nimmo-Smith, I., Contributors, D.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8(8), 1–17 (2014)Google Scholar
  7. 7.
    Jelescu, I.O., Veraart, J., Fieremans, E., Novikov, D.S.: Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue. NMR Biomed. 29(1), 33–47 (2016). nBM-15-0204.R2Google Scholar
  8. 8.
    Jespersen, S.N., Kroenke, C.D., Stergaard, L., Ackerman, J.J., Yablonskiy, D.A.: Modeling dendrite density from magnetic resonance diffusion measurements. NeuroImage 34(4), 1473–1486 (2007)CrossRefGoogle Scholar
  9. 9.
    Jespersen, S.N., Bjarkam, C.R., Nyengaard, J.R., Chakravarty, M.M., Hansen, B., Vosegaard, T., Stergaard, L., Yablonskiy, D., Nielsen, N.C., Vestergaard-Poulsen, P.: Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparsion with light microscopy and electron microscopy. NeuroImage 49(1), 205–216 (2010)CrossRefGoogle Scholar
  10. 10.
    Kaden, E., Kelm, N.D., Carson, R.P., Does, M.D., Alexander, D.C.: Multi-compartment microscopic diffusion imaging. NeuroImage 139, 346–359 (2016)CrossRefGoogle Scholar
  11. 11.
    Kaden, E., Kruggel, F., Alexander, D.C.: Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn. Reson. Med. 75(4), 1752–1763 (2016)CrossRefGoogle Scholar
  12. 12.
    Kent, J.T.: The fisher-bingham distribution on the sphere. J. R. Stat. Soc. Ser. B Methodol. 44(1), 71–80 (1982)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Novikov, D.S., Jespersen, S.N., Kiselev, V.G., Fieremans, E.: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation (2016). arXiv preprint arXiv:1612.02059Google Scholar
  14. 14.
    Novikov, D.S., Veraart, J., Jelescu, I.O., Fieremans, E.: Mapping orientational and microstructural metrics of neuronal integrity with in vivo diffusion MRI (2016). arXiv preprint arXiv:1609.09144Google Scholar
  15. 15.
    Reisert, M., Kellner, E., Dhital, B., Hennig, J., Kiselev, V.G.: Disentangling micro from mesostructure by diffusion MRI: a Bayesian approach. NeuroImage 147, 964–975 (2017)CrossRefGoogle Scholar
  16. 16.
    Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., et al.: Advances in diffusion MRI acquisition and processing in the human connectome project. NeuroImage 80, 125–143 (2013)CrossRefGoogle Scholar
  17. 17.
    Tariq, M., Schneider, T., Alexander, D.C., Wheeler-Kingshott, C.A.G., Zhang, H.: Bingham–noddi: mapping anisotropic orientation dispersion of neurites using diffusion MRI. NeuroImage 133, 207–223 (2016)CrossRefGoogle Scholar
  18. 18.
    Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)CrossRefGoogle Scholar
  19. 19.
    Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23(3), 1176–1185 (2004)CrossRefGoogle Scholar
  20. 20.
    Tran, G., Shi, Y.: Fiber orientation and compartment parameter estimation from multi-shell diffusion imaging. IEEE Trans. Med. Imaging 34(11), 2320–2332 (2015)CrossRefGoogle Scholar
  21. 21.
    Zhang, H., Schneider, T., Wheeler-Kingshott, C., Alexander, D.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4), 1000–1016 (2012)CrossRefGoogle Scholar
  22. 22.
    Zucchelli, M., Brusini, L., Méndez, C.A., Daducci, A., Granziera, C., Menegaz, G.: What lies beneath? Diffusion eap-based study of brain tissue microstructure. Med. Image Anal. 32, 145–156 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mauro Zucchelli
    • 1
  • Maxime Descoteaux
    • 2
  • Gloria Menegaz
    • 1
  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly
  2. 2.Sherbrooke Connectivity Imaging Lab, Computer ScienceUniversité de SherbrookeSherbrookeCanada

Personalised recommendations