Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players

  • Itay Benou
  • Ronel Veksler
  • Alon Friedman
  • Tammy Riklin Raviv
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


We present the concept of fiber-flux density for locally quantifying white matter (WM) fiber bundles. By combining scalar diffusivity measures (e.g., fractional anisotropy) with fiber-flux measurements, we define new local descriptors called Fiber-Flux Diffusion Density (FFDD) vectors. Applying each descriptor throughout fiber bundles allows along-tract coupling of a specific diffusion measure with geometrical properties, such as fiber orientation and coherence. A key step in the proposed framework is the construction of an FFDD dissimilarity measure for sub-voxel alignment of fiber bundles, based on the fast marching method (FMM). The obtained aligned WM tract-profiles enable meaningful inter-subject comparisons and group-wise statistical analysis. We demonstrate our method using two different datasets of contact sports players . Along-tract pairwise comparison as well as group-wise analysis, with respect to non-player healthy controls, reveal significant and spatially-consistent FFDD anomalies. Comparing our method with along-tract FA analysis shows improved sensitivity to subtle structural anomalies in football players over standard FA measurements.



This research is partially supported by the Israel Science Foundation (T.R.R. 1638/16) and the IDF Medical Corps (T.R.R.).


  1. 1.
    Andersson, J.L.R., Jenkinson, M., Smith, S., et al.: Non-linear registration, aka spatial normalisation FMRIB technical report TR07JA2. FMRIB Analysis Group of the University of Oxford, 2 (2007)Google Scholar
  2. 2.
    Basser, P., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994)CrossRefGoogle Scholar
  3. 3.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Charon, N., Trouvé, A.: The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6, 2547–2580 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chung, M.K., Adluru, N., Lee, J.E., et al.: Cosine series representation of 3D curves and its application to white matter fiber bundles in diffusion tensor imaging. Stat. Interface 3, 69 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cohen, I., Ayache, N., Sulger, P.: Tracking points on deformable objects using curvature information. In: ECCV, pp. 458–466 (1992)Google Scholar
  7. 7.
    Colby, J.B., Soderberg, L., Lebel, C., et al.: Along-tract statistics allow for enhanced tractography analysis. NeuroImage 59, 3227–3242 (2012)CrossRefGoogle Scholar
  8. 8.
    Corouge, I., Gouttard, S., Gerig, G.: Towards a shape model of white matter fiber bundles using diffusion tensor MRI. In: ISBI, pp. 344–347 (2004)Google Scholar
  9. 9.
    Durrleman, S., et al.: Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. NeuroImage 55, 1073–1090 (2011)CrossRefGoogle Scholar
  10. 10.
    Frenkel, M., Basri, R.: Curve matching using the fast marching method. In: EMMCVPR, pp. 35–51 (2003)Google Scholar
  11. 11.
    Garyfallidis, E., Brett, M., Correia, M.M., et al.: Quickbundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)CrossRefGoogle Scholar
  12. 12.
    Garyfallidis, E., Ocegueda, O., Wassermann, D., Descoteaux, M.: Robust and efficient linear registration of white-matter fascicles in the space of streamlines. NeuroImage 117, 124–140 (2015)CrossRefGoogle Scholar
  13. 13.
    Heimer, L.: The Human Brain and Spinal Cord: Functional Neuroanatomy and Dissection Guide. Springer Science & Business Media, New York (2012)Google Scholar
  14. 14.
    Hulkower, M.B., Poliak, D.B., Rosenbaum, S.B., et al.: A decade of DTI in traumatic brain injury: 10 years and 100 articles later. Am. J. Neuroradiol. 34, 2064–2074 (2013)CrossRefGoogle Scholar
  15. 15.
    Khatami, M., Schmidt-Wilcke, T., Sundgren, P.C., et al.: Bundlemap: anatomically localized classification, regression, and hypothesis testing in diffusion MRI. Pattern Recogn. 63, 593–600 (2017)CrossRefGoogle Scholar
  16. 16.
    Klein, J., Hermann, S., Konrad, O., et al.: Automatic quantification of DTI parameters along fiber bundles. In: Bildverarbeitung für die Medizin 2007, pp. 272–276. Springer, Berlin (2007)Google Scholar
  17. 17.
    Mårtensson, J., Nilsson, M., Ståhlberg, F., et al.: Spatial analysis of diffusion tensor tractography statistics along the inferior fronto-occipital fasciculus with application in progressive supranuclear palsy. MAGMA 26, 527–537 (2013)CrossRefGoogle Scholar
  18. 18.
    Mori, S., Oishi, K., Jiang, H., et al.: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 40, 570–582 (2008)CrossRefGoogle Scholar
  19. 19.
    O’Donnell, L., Pasternak, O.: Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls. Schizophr. Res. 161, 133–141 (2015)CrossRefGoogle Scholar
  20. 20.
    O’Donnell, L.J., et al.: Tract-based morphometry for white matter group analysis. NeuroImage 45, 832–844 (2009)CrossRefGoogle Scholar
  21. 21.
    O’Donnell, L.J., Wells, W.M., Golby, A.J., et al.: Unbiased groupwise registration of white matter tractography. Med. Image Comput. Comput. Assist. Interv. 15, 123–130 (2012)Google Scholar
  22. 22.
    Sebastian, T.B., Klein, P.N., et al.: On aligning curves. IEEE Trans. Pattern Anal. Mach. Intell. 25, 116–125 (2003)CrossRefGoogle Scholar
  23. 23.
    Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. U. S. A. 93, 1591–1595 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shenton, M.E., Hamoda, H.M., Schneiderman, J.S., et al.: A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 6, 137–192 (2012)CrossRefGoogle Scholar
  25. 25.
    Smith, S.M., Jenkinson, M., Johansen-Berg, H., et al.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31, 1487–1505 (2006)CrossRefGoogle Scholar
  26. 26.
    Stamile, C., et al.: A sensitive and automatic white matter fiber tracts model for longitudinal analysis of diffusion tensor images in multiple sclerosis. PLoS One 11, e0156405 (2016)CrossRefGoogle Scholar
  27. 27.
    Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. In: ACM Transactions on Graphics, p. 71 (2009)Google Scholar
  28. 28.
    Yeatman, J.D., Dougherty, R.F., Myall, N.J., et al.: Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One 7, e49790 (2012)CrossRefGoogle Scholar
  29. 29.
    Yeh, F.C., Verstynen, T.D., Wang, Y., et al.: Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One 8, e80713 (2013)CrossRefGoogle Scholar
  30. 30.
    Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58, 565–586 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Yushkevich, P.A., Zhang, H., Simon, T.J., et al.: Structure-specific statistical mapping of white matter tracts. NeuroImage 41, 448–461 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Itay Benou
    • 1
    • 2
  • Ronel Veksler
    • 2
    • 3
  • Alon Friedman
    • 2
    • 3
    • 4
  • Tammy Riklin Raviv
    • 1
    • 2
  1. 1.Department of Electrical EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.The Zlotowski Center for NeuroscienceBen-Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Department of Physiology and Cell BiologyBen-Gurion University of the NegevBeer-ShevaIsrael
  4. 4.Faculty of Medicine, Department of Medical Neuroscience and Brain Repair CentreDalhousie UniversityHalifaxCanada

Personalised recommendations