Skip to main content

Exploiting Machine Learning Principles for Assessing the Fingerprinting Potential of Connectivity Features

  • Conference paper
  • First Online:
Computational Diffusion MRI

Abstract

To which extent connectivity measures are able to characterize subjective features? The pipeline leading from the signal acquisition to the connectivity matrix allows numerous degrees of freedom each having an impact on the final result. In this paper, we investigated the sensitivity and specificity of the connectivity models within a machine learning framework through the assessment of the detectability of repeated measures of the same subject versus other subjects. Two fiber Orientation Distribution Function (fODF) reconstruction methods, one of which firstly proposed in this paper, three tractography algorithms and four connectivity features were considered and performance was expressed in terms of Area Under the Curve of the test-retest recognition task. Results suggest that there is a trade-off between the selectivity of the fODF reconstruction methods and the conservativeness of the fiber tracking algorithms across all microstructural indices . The best solution was provided by using an high angular resolution fODF estimation method and the most restrictive deterministic tractography algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaden, E., Kruggel, F., Alexander, D.C.: Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn. Reson. Med. 75(4), 1752–1763 (2016)

    Google Scholar 

  2. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159 (2008)

    Google Scholar 

  3. Vaessen, M., Hofman, P., Tijssen, H., Aldenkamp, A., Jansen, J.F., Backes, W.H.: The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures. NeuroImage 51(3), 1106–1116 (2010)

    Google Scholar 

  4. Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Yücel, M., Pantelis, C., Bullmore, E.T.: Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage 50(3), 970–983 (2010)

    Google Scholar 

  5. Bassett, D.S., Brown, J.A., Deshpande, V., Carlson, J.M., Grafton, S.T.: Conserved and variable architecture of human white matter connectivity. NeuroImage 54(2), 1262–1279 (2011)

    Google Scholar 

  6. Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J.P., Sporns, O., Do, K.Q., Maeder, P., Meuli, R., Hagmann, P.: Mapping the human connectome at multiple scales with diffusion spectrum MRI. J. Neurosci. Methods 203(2), 386–397 (2012)

    Google Scholar 

  7. Cheng, H., Wang, Y., Sheng, J., Kronenberger, W.G., Mathews, V.P., Hummer, T.A., Saykin, A.J.: Characteristics and variability of structural networks derived from diffusion tensor imaging. NeuroImage 61(4), 1153–1164 (2012)

    Google Scholar 

  8. Buchanan, C.R., Pernet, C.R., Gorgolewski, K.J., Storkey, A.J., Bastin, M.E.: Test–retest reliability of structural brain networks from diffusion MRI. NeuroImage 86, 231–243 (2014)

    Google Scholar 

  9. Zucchelli, M., Descoteaux, M., Menegaz, G.: A generalized SMT-based framework for diffusion MRI microstructural model estimation. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), Workshop on Computational Diffusion MRI (CDMRI) (2017)

    Google Scholar 

  10. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

  11. Cheng, J., Deriche, R., Jiang, T., Shen, D., Yap, P.T.: Non-negative spherical deconvolution (NNSD) for estimation of fiber orientation distribution function in single-/multi-shell diffusion MRI. NeuroImage 101, 750–764 (2014)

    Article  Google Scholar 

  12. Brusini, L., Obertino, S., Galazzo, I.B., Zucchelli, M., Krueger, G., Granziera, C., Menegaz, G.: Ensemble average propagator-based detection of microstructural alterations after stroke. Int. J. Comput. Assist. Radiol. Surg. 11(9), 1585–1597 (2016)

    Article  Google Scholar 

  13. Kaden, E., Kelm, N.D., Carson, R.P., Does, M.D., Alexander, D.C.: Multi-compartment microscopic diffusion imaging. NeuroImage 139, 346–359 (2016)

    Article  Google Scholar 

  14. Zucchelli, M., Brusini, L., Méndez, C.A., Daducci, A., Granziera, C., Menegaz, G.: What lies beneath? diffusion eap-based study of brain tissue microstructure. Med. Image Anal. 32, 145–156 (2016)

    Article  Google Scholar 

  15. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014)

    Article  Google Scholar 

  16. Andersson, J.L., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2), 870–888 (2003)

    Article  Google Scholar 

  17. Andersson, J.L., Sotiropoulos, S.N.: Non-parametric representation and prediction of single-and multi-shell diffusion-weighted MRI data using Gaussian processes. NeuroImage 122, 166–176 (2015)

    Article  Google Scholar 

  18. Garyfallidis, E.: Towards an accurate brain tractography. PhD thesis, University of Cambridge (2013)

    Google Scholar 

  19. Tournier, J., Calamante, F., Connelly, A., et al.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Obertino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Obertino, S., Hernández, S.J., Galazzo, I.B., Pizzini, F.B., Zucchelli, M., Menegaz, G. (2018). Exploiting Machine Learning Principles for Assessing the Fingerprinting Potential of Connectivity Features. In: Kaden, E., Grussu, F., Ning, L., Tax, C., Veraart, J. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-73839-0_14

Download citation

Publish with us

Policies and ethics