Skip to main content

Part of the book series: Risk Engineering ((RISK))

Abstract

Bridges form a substantial part of the infrastructure systems in almost all countries worldwide. The global stock is estimated between five and six million bridges (see Chap. 6). Approximately one bridge per 500 inhabitants is counted in developed countries and about one bridge per 2000 inhabitants is counted in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen DE (1992) Canadian highway bridge evaluation: reliability index. Can J Civ Eng 19:593–602

    Google Scholar 

  • Aven T, Vinnem JE, Vollen F (2005) Perspectives on risk acceptance criteria and management for installations—application to a development project. In: Kolowrocki (ed) Advances in safety and reliability, Taylor & Francis Group, U.K, pp 107–114

    Google Scholar 

  • Ball DJ, Floyd PJ (2001) Societal risks, final report, school of health, biological and environmental sciences. Middlesex University, London

    Google Scholar 

  • Banerjee S, Shinozuka M (2008) Mechanistic quantification of RC bridge damage states under earthquake through fragility analysis. Probab Eng Mech 23(1):12–22

    Article  Google Scholar 

  • Bea RG (1994) The Role of human error in design, construction, and reliability of marine structures, SSC-378. Ship Structure Committee, Berkeley

    Google Scholar 

  • Beeby AW, Taylor HPJ (1973) How well can we use graphs. Commun Sci Tech Inf 17:7–11

    Google Scholar 

  • Billah AHMM, Alam MS (2013) Seismic fragility assessment of highway bridges: a state-of-the-art review. Struct Infrastruct Eng Maint Manag Life Cycle Des Perform 11(6):804–832

    Article  Google Scholar 

  • Blockley DI (1980) The natur of structural design and safety. Wiley & Sons, Chichester

    Google Scholar 

  • Casas JR, Prato CA, Huerta S, Soaje PJ, Gerbaudo CF (2001) Probabilistic assessment of roadway and railway viaducts. Saf, Risk, Reliab Trends Eng Malta 2001:1001–1008

    Google Scholar 

  • CEB (1976) Comité Euro-International du beton: International system of unified standard—codes of practice for structures, Volume I: Common unified rules for different types of construction and material (3rd Draft, Master Copy), Bulletin d’information 116 E, Paris, Nov 1976

    Google Scholar 

  • Chlond B, Lipps O, Zumkeller D (1998) Das Mobilitätspanel (MOP)—Konzept und Realisierung einer bundesweiten Längsschnittbeobachtung, Universität Karlsruhe—Institut für Verkehrswesen, IfV—Report Nr. 98–2

    Google Scholar 

  • CIRIA (1977) Rationalisation of safety and serviceability factors in structural codes, Report No. 63, Seminar Edition, Construction Industry Research and Information Association, London

    Google Scholar 

  • Cornell CA (1967) Bounds on the reliability of structural systems. J Struct Div 93(ST1/1967):171–200

    Google Scholar 

  • COST-345 (2004) European Commission Directorate General Transport and Energy: COST 345—Procedures Required for the Assessment of Highway Structures: Numerical Techniques for Safety and Serviceability Assessment—Report of Working Groups 4 and 5

    Google Scholar 

  • Cox AW, Lees FP, Ang ML (1990) Classification of hazardous locations. Institution of Chemical Engineers, Rugby

    Google Scholar 

  • Daniel JE, Wenzel F, Werner A, Schaefer AM, Tsang HH (2017) An introduction of tools for evaluating the influence of building codes on the level of earthquake fatalities globally, In: Hao, Zhang (eds) Mechanics of structures and materials: advances and challenges, Proceedings of the 24th Australasian conference on the Mechanics Of Structures and Materials (ACMSM24), Perth, Australia, 6–9 Dec 2016, Taylor & Francis Group, London, pp 1633–1639

    Google Scholar 

  • Das PC (1997) Safety of bridges. Thomas Telford, London

    Google Scholar 

  • Davis-Mcdaniel C (2011) Fault-Tree model for bridge collapse risk analysis. Thesis, Clemson University, MSc

    Google Scholar 

  • Davis-Mcdaniel C, Chowdhury M, Pang W, Dey K (2013) Fault-Tree model for risk assessment of bridge failure: case study for segmental box girder bridges. J Infrastruct Syst 19(3):326–334

    Article  Google Scholar 

  • Der Kiureghian A, Haukaas T, Fujimura K (2006) Structural reliability software at the University of California, Berkeley. Struct Saf 28:44–67

    Article  Google Scholar 

  • Diamantidis D, Holicky M, Jung K (2007) Assessment of existing structures—on the applicability of the JCSS recommendations, In: Aspects of Structural Reliability—In Honor of R Rackwitz. In: Faber Vrouwenvelder (ed) Zilch. Herbert Utz Verlag, München

    Google Scholar 

  • DIN 1055–100 (1999) Einwirkungen auf Tragwerke, Teil 100: Grundlagen der Tragwerksplanung. Sicherheitskonzept und Bemessungsregeln, Juli, p 1999

    Google Scholar 

  • Ditlevsen O (1979) Narrow reliability bounds for structural systems. J Struct Mech 7(4/1979):453–472

    Google Scholar 

  • Duckett W (2005) Risk analysis and the acceptable probability of failure. Struct Eng 83(15):25–26

    Google Scholar 

  • Eldukair ZA & Ayyub BM (1991) Analysis of Recent U.S. Structural and Construction Failures. J Perform Constr Facil 5(1): 57–73, February

    Google Scholar 

  • El-Shahhat AM, Rosowsky DV, Chen WF (1995) Accounting for human error during design and construction. J Archit Eng 1(2):84–92

    Article  Google Scholar 

  • EPRI (1994) Methodology for developing seismic fragilities, prepared by J. R, Benjamin and Associates, Inc and RPK Structural Mechanics Consulting, TR-103959, Project 2722-23, June 1994

    Google Scholar 

  • Epstein S, Rauzyb A, Reinhart FM (2008) The open PSA initiative for next generation probabilistic safety assessment. In: Schmidt H, Proske D (eds) Proceedings of the 6th International Probabilistic Workshop, Graubner, Darmstadt

    Google Scholar 

  • Eurocode 1 (1994) (ENV 1991–1): Basis of design and action on structures, Part 1: Basis of design, CEN/CS, Aug 1994

    Google Scholar 

  • Fischer A (2010) Bestimmung modifizierter Teilsicherheitsbeiwerte zur semiprobabilistischen Bemessung von Stahlbetonkonstruktionen im Bestand, Dissertation, Kaiserslautern

    Google Scholar 

  • Fischer A, Schnell J (2008) Determination of partial safety factors for existing structures. In: Graubner CA, Schmidt H, Proske D (eds) Proceedings of the 6th International Probabilistic Workshop, Darmstadt, pp 133–147

    Google Scholar 

  • Fischer J, Straub D, Schneider R, Thöns S, Rücker W (2004) Intelligente Brücke—Zuverlässigkeitsbasierte Bewertung von Brückenbauwerken unter Berücksichtigung von Inspektions- und Ãœberwachungsergebnissen, Bundesanstalt für Straßenwesen, Heft B99, Bergisch-Gladbach

    Google Scholar 

  • Franz G, Hampe E, Schäfer K (1991) Konstruktionslehre des Stahlbetons, Band II: Tragwerke, Zweite Auflage, Springer Verlag, Berlin

    Google Scholar 

  • Freudenthal AM (1947) Safety of structures. Trans ASCE, V 112(1947):127–180

    Google Scholar 

  • Freudenthal AM (1968) Critical appraisal of safety criteria and their basic concepts. IABSE congress report 8(1968):13–24

    Google Scholar 

  • Fröderberg M (2014) The human factor in structural engineering—a source of uncertainty and reduced structural safety. Division of Structural Engineering, Faculty of Engineering, Lund University, Sweden

    Google Scholar 

  • Geißler K (1995) Beitrag zur probabilistischen Berechnung der Restnutzungsdauer stählerner Brücken, Dissertation, Heft 2 der Schriftreihe des Institutes für Tragwerke und Baustoffe an der Technischen Universität Dresden

    Google Scholar 

  • Ghasemi SH (2015) Target reliability analysis for structures. Dissertation, Auburn University, May 2015

    Google Scholar 

  • Gollwitzer S, Rackwitz R (1990) On the reliability of Daniels systems. Struct Saf 7:229–243

    Article  Google Scholar 

  • Gollwitzer S, Kirchgäßner B, Fischer R, Rackwitz R (2006) PERMAS-RA/STRUEL system of programs for probabilistic reliability analysis. Struct Saf 28:108–129

    Article  Google Scholar 

  • Greig GL (1992) An Assessment of high-order bounds for structural reliability. Struct Saf 11:213–225

    Article  Google Scholar 

  • GruSiBau (1981) Normenausschuß Bauwesen im DIN: Grundlagen zur Festlegung von Sicherheitsanforderungen für bauliche Anlagen, Beuth Verlag

    Google Scholar 

  • Haldi PA, Vulliet L (1998) Fiabilité et sécurité des systèmes civils. Lecture notes, Swiss Federal Institute of Technology (EPFL), Lausanne

    Google Scholar 

  • Helbig S (1987) Systemzuverlässigkeit von Konstruktionen im Maschinenbau und Bauwesen auf der Theorie der monotonen Systeme. Akademie der Wissenschaften, Institut für Mechanik, Karl-Marx-Stadt

    MATH  Google Scholar 

  • Hingorani R (2017) Acceptable Life Safety Risks associated with the effects of Gas Explosions on Reinforced Concrete Structures, Dissertation, Universidad Politecnica De Madrid

    Google Scholar 

  • ICOLD (2005) Risk assessment in dam safety management, ICOLD Bulletin 130

    Google Scholar 

  • ISO 2394 (1998) General principles on reliability of structures, 2nd ed. Springer, New York

    Google Scholar 

  • ISO, CD 13822 (1999) Bases for design of structures—Assessment of existing structures. International Organisation for Standardization, Geneva

    Google Scholar 

  • JCSS (2004) Joint committee of structural safety, Probabilistic Modelcode, www.jcss.ethz.ch

  • Jonkman SN (2007) Loss of life estimation in flood risk assessment, theory and applications. Dissertation, Delft University of Technology, Delft, the Netherlands, 360 pp

    Google Scholar 

  • Jonkman SN, van Gelder PHAJM, Vrijling JK (2003) An overview of quantitative risk measures for loss of life and economic damage. J Hazard Mater A99:1–30

    Article  Google Scholar 

  • Josephson PE, Hammarlund Y (1996) Kvalitetsfelkostnader in the 90s—A study of seven building projects, Part I: Results, Gothenburg: Report 49th, Chalmers University, Inst. Construction Economy

    Google Scholar 

  • Kennedy RP (1999) Overview of methods for seismic PRA and SMA Analysis including recent innovations. In: Proceedings of the OECD/NEA workshop on seismic risk, 10–12 Aug 1999, Tokyo, Japan

    Google Scholar 

  • Kennedy RP, Cornell CA, Campbell RD, Kaplan S, Perla HF (1980) Probabilistic seismic safety of an existing nuclear power plant. Nuclear Eng, Design 59:315–338

    Article  Google Scholar 

  • Kienholz H, Krummenacher B, Kipfer A, Perret S (2004) Aspect of integral risk management in practice—considerations. Österreichische Wasser- und Abfallwirtschaft. vol 56, Heft 3–4, Mar–April 2004, pp 43–50

    Google Scholar 

  • Kim K, Kang DI, Yang J-E (2005) On the use of the balancing method for calculating component RAW involving CCFs in SSC categorization. Reliab Eng System Saf 87:233–242

    Article  Google Scholar 

  • Kotes P, Vican J (2012) Reliability levels for existing bridges evaluation according to Eurocode. Proc Eng 40:211–2016

    Article  Google Scholar 

  • Krystek R, Zukowska R (2005) Time series—the tool for traffic safety analysis. In: Kolowrocki (ed) Advances in safety and reliability, Taylor and Francis, London, pp 1199–1202

    Google Scholar 

  • LeBeau KH, Wadia-Fascett SJ (2007) Fault Tree analysis of Schoharie Creek bridge collapse. J Perform Constr Facil vol 21(4), Aug 2007

    Google Scholar 

  • Lemaire M, Pendola M (2006) PHIMECA-soft. Struct Saf 28:130–149

    Article  Google Scholar 

  • Lin H-Z, Khalessi MR (2006) General outlook of UNIPASS V5.0: a general-purpose probabilistic software system. Struct Saf 28:196–216

    Article  Google Scholar 

  • Liu X (2000) Analysis and control of human errors during structural construction. In: Coble RJ, Haupt TC, Hinze J (ed) The management of construction safety and health. Balkema, Rotterdam, pp 47–66

    Google Scholar 

  • Low BK, Teh CI (2000) Probabilistic analysis of pile deflection under lateral loads. In: Melchers RE, Stewart MG (eds) Application of statistics and probability ICASP 8, vol 1. Balkema, Rotterdam pp 407–414

    Google Scholar 

  • Maag T (2004) Risikobasierte Beurteilung der Personensicherheit von Wohnbauten im Brandfall unter Verwendung von Bayes’schen Netzen, Institut für Baustatik, und Konstruktion, ETH Zürich, vdf Hochschulverlag AG an der ETH Zürich, IBK Bericht 282, März 2004 Zürich

    Google Scholar 

  • MacDonald AJ, Wight RG, Bartlett FM (2016) Acceptable risk in military bridge evaluation. Adv Mil Technol 1(2):197–209

    Google Scholar 

  • Madsen HO, Krenk S, Lind NC (2006) Methods of structural safety. Dover Publications, Reprint, Mineola/New York

    Google Scholar 

  • Mainpost (2009) Bei Schiffskollision nicht alle standfest. Main-Netz 6(2):2009

    Google Scholar 

  • Mannan S (2005) Lee´s loss prevention in the process industries, hazard identification, assessment and control, vol 1, 3rd edn. Elsevier Butterworth-Heinemann, Burlington

    Google Scholar 

  • Mathieu H, Saillard Y (1974) Sécurité des Structures Concepts générauxh charges et actions. CEB, Bulletin d’information 102, Paris

    Google Scholar 

  • Matousek M (1982) Massnahmen gegen Fehler im Bauprozess. Birkhäuser: Zürich

    Google Scholar 

  • Matousek M, Schneider J (1976) Untersuchungen zur Struktur des Sicherheitsproblems bei Bauwerken, IBK-Bericht No, 59, ETH Zürich

    Google Scholar 

  • Mayer M (1926) Die Sicherheit der Bauwerke und ihre Berechnung nach Grenzkräften anstatt nach zulässigen Spannungen. Verlag von Julius Springer, Berlin

    MATH  Google Scholar 

  • Melchers RE (1984) Human error in structural reliability assessments. Reliab Eng 7:61–75

    Article  Google Scholar 

  • Melchers RE (1999) Structural Reliability—analysis and prediction, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Melchers RE, Baker MJ, Moses F (1983) Evaluation of experience. Proceedings—IABSE Workshop 1983: Quality Assurance within the Building Process, Int Assoc Bridge Struct Eng, Rigi, 21–38

    Google Scholar 

  • Menzies JB (1996) Bridge failures, hazards and societal risk. In: International symposium on the Safety of bridges, July 1996, London

    Google Scholar 

  • Moses F (2001) Calibration of load factors for LRFR bridge evaluation, NCHRP Report 405, Transportation Research Board. National Research Council, Washington DC

    Google Scholar 

  • Müller HS, Vogel M, Neumann T (2011) Die Quantifizierung der Lebensdauer von Betonbrücken mit den Methoden der Systemanalyse, Berichte der Bundesanstalt für Straßenwesen, Brücken- und Ingenieurbau, Heft B81, Bergisch Gladbach

    Google Scholar 

  • Murzewski J (1974) Sicherheit der Baukonstruktionen. VEB Verlag für Bauwesen, Berlin, DDR

    Google Scholar 

  • O`Connor C, Shaw P (2000) Bridge loads: an international perspective. SPON Press, London

    Google Scholar 

  • Pan Y, Agrawal AK, Ghosn M (2007) Seismic fragility of continuous steel highway bridges in New York State. J Bridge Eng 12(6):689–699

    Article  Google Scholar 

  • Petschacher M (1994) VaP a tool for practicing engineers. In: Schueller et al (eds) Proceedings of ICOSSAR’936th international conference on Structural safety and reliability in Innsbruck, Balkema, pp 1817–1823

    Google Scholar 

  • Proske D (2009) Catalogue of Risk. Springer, Berlin, Heidelberg

    Google Scholar 

  • Proske D (2012) Vollprobabilistische Ermittlung der Fragility-Kurve einer Stahldruckschale bei Wasserstoff-Deflagration, Bautechnik, vol 89, Heft 1

    Google Scholar 

  • Proske D, Loos S (2009) Eurocode road traffic load models for weight restricted bridges, ESREL 2009. In: BriÅ¡, Guedes Soares, Martorell (eds) Reliability, risk and safety: theory and applications. Taylor & Francis Group, London, ISBN 978-0-415-55509-8, pp 1397–1404

    Google Scholar 

  • Proske D, van Gelder P (2009) Safety of historical stone arch bridges. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Pugsley A (1968) The safety of bridges. Struct Eng 46(1968):197

    Google Scholar 

  • Pukl R, Novak D, Vorechovsky M, Bergmeister K (2006) Uncertainties of material properties in nonlinear computer simulation. In: Dirk Proske, Milad Mehdianpour und Lucjan Gucma (eds) 4th International probabilistic symposium, Berlin, pp 127–138

    Google Scholar 

  • Quan Q (2004) Modeling current traffic load, safety evaluation and SFE analysis of four bridges in China. In: Brebbia CA (ed) Risk analysis IV. Wessex Institute of Technology Press, Southampton

    Google Scholar 

  • Rackwitz R (1998) Zuverlässigkeit und Lasten im konstruktiven Ingenieurbau. Zuverlässigkeitstheoretische Grundlagen, Technische Universität München, Teil I, pp 1993–1998

    Google Scholar 

  • Rackwitz R (1999) Zuverlässigkeitsbetrachtungen bei Verlust der Dauerhaftigkeit von Bauteilen und Bauwerken; Kurzberichte aus der Bauforschung 40 (1999), Nr. 4, Forschungsbericht Nr. T 2847, Stuttgart IRB, pp 297–301

    Google Scholar 

  • Rackwitz R (2001) Zuverlässigkeit von Tragwerken, in: Zilch, Diederichs, Katzenbach (eds) Handbuch für Bauingenieure, Springer, Berlin, pp 1-217-1-260

    Google Scholar 

  • Randsaeter A (2000) Risk Assessment in the offshore industry, In: Proceedings—Part 2/2 of Promotion of technical harmonization on risk-based decision-making, Workshop, May 2000. Stresa, Italy

    Google Scholar 

  • Reason J (1990) The Contribution of latent human failures to the breakdown of complex systems. Philos Trans R Soc Lond B Biol Sci 327(1241):475–484

    Article  Google Scholar 

  • Reh S, Beley J-D, Mukherjee S, Khor EH (2006) Probabilistic finite element analysis using ANSYS. Struct Saf 28:17–43

    Article  Google Scholar 

  • Reid SG (2000) Acceptable risk criteria. Prog Struct Mat Eng 2(2):254–262

    Article  Google Scholar 

  • Rizkallah V, Harder H, Jebe P, Vogel J (1990) Bauschäden im Spezialtiefbau, Institut für Bauschadensforschung e, V, Heft 3. Eigenverlag, Hannover

    Google Scholar 

  • SBA (2006) Statistisches Bundesamt: Unfallgeschehen im Straßenverkehr 2005. Statistisches Bundesamt Wiesbaden, Deutschland

    Google Scholar 

  • Schlegel R, Will J (2007) Sensitivitätsanalyse und Parameteridentifikation von bestehenden Mauerwerkstrukturen. Mauerwerk 11. Heft 6:349–355

    Google Scholar 

  • Schneider R, Fischer J, Bügler M, Nowak M, Thöns S, Borrmann A, Straub D (2015) Assessing and updating the reliability of concrete bridges subjected to spatial deterioration—principles and software implementation. Structural Concrete 16(3):356–365

    Article  Google Scholar 

  • Schueller GI, Pradlwarter HJ (2006) Computational stochastic structural analysis (COSSAN)—a software tool. Struct Saf 28:68–82

    Article  Google Scholar 

  • Schueremans L, Van Gemert D (2001) Assessment of existing masonry structures using probabilistic methods—state of the art and new approaches. Fifth international symposium on computer methods in structural masonry STRUMAS, KU Leuven, Belgium, 18–20 April 2001

    Google Scholar 

  • SIA 269 (2007) Schweizerischer Ingenieur- und Architektenverein: SIA 269: Grundlagen der Erhaltung von Tragwerken; Schweizerischer Ingenieur- und Architektenverein, Zürich Entwurf 03/2007

    Google Scholar 

  • Spaethe G (1992) Die Sicherheit tragender Baukonstruktionen, 2, Neubearbeitete edn. Springer Verlag, Wien

    Book  Google Scholar 

  • Steel RD, Torrie JH (1991) Prinsip dan Prosedur Statistika, 2nd edn. Gramedia Pustaka Utama, Jakarta

    Google Scholar 

  • Steenbergen RDJM, Vrouwenvelder ACWM (2010) Safety philosophy for existing structures and partial factors for traffic in loads on bridges. Heron 55(2)

    Google Scholar 

  • Stewart MG (1993) Structural reliability and error control in reinforced concrete design and construction. Struct Saf 12:277–292

    Article  Google Scholar 

  • Stewart MG, Melchers RE (1989) Error control in member design. Struct Saf 6:11–24

    Article  Google Scholar 

  • Straub D, Der Kiureghian A (2011) Reliability acceptance criteria for deteriorating elements of structural systems. J Struct Eng Trans. ASCE 137(12):1573–1582

    Article  Google Scholar 

  • Strauss A, Bergmeister K (2005) Safety concepts of new and existing structures. Presentation at fib commission 2nd meeting on Safety and performance concepts, Budapest, 23 May 2005

    Google Scholar 

  • Sýkora M, Holicky M (2013) Target reliability levels for the assessment of existing structures—case study. In: Strauss A, Frangopol DM, Bergmeister K (eds) Life-cycle and sustainability of civil infrastructure systems. CRC Press, Taylor and Francis, London, pp 189

    Google Scholar 

  • Sýkora M, Holický M, Lenner R, Manas P (2013) Optimum target reliability for bridges considering emergency situations. In: Proceedings of the 11th international probabilistic workshop on Novák and VoÅ™echovský, Brno, pp 439–450

    Google Scholar 

  • Tanner P, Hingorani R (2015) Acceptable risks to persons associated with building structures. Struct Concr 16(3):314–322

    Google Scholar 

  • Tarkov J (1986) A disaster in the making. Am Herit Invent Technol 1(3)

    Google Scholar 

  • Thacker BH, Riha DS, Fitch SHK, Huyse LJ, Pleming JB (2006) Probabilistic engineering analysis using the NESSUS software. Struct Saf 28:83–107

    Article  Google Scholar 

  • Thoft-Christensen P, Baker M (1982) Structural reliability theory and its applications, Murotsu, Yoshisada: application of structural system reliability theory. Springer, Berlin, Heidelberg, New York

    Book  MATH  Google Scholar 

  • Tichý M (1976) Probleme der Zuverlässigkeit in der Theorie von Tragwerken, Vorträge zum Problemseminar: Zuverlässigkeit tragender Konstruktionen, Weiterbildungszentrum Festkörpermechanik, Konstruktion und rationeller Werkstoffeinsatz, Technische Universität Dresden—Sektion Grundlagen des Maschinenwesens, Heft 3/76

    Google Scholar 

  • Tsang HH, Wenzel F (2016) Setting structural safety requirements for controlling earthquake mortality risk. Saf Sci 86: 174–183

    Google Scholar 

  • Tvedt L (2006) Proban—probabilistic analysis. Struct Saf 28:150–163

    Article  Google Scholar 

  • Tweed MH (1969) A summary and analysis of bridge failures. M.Sc. Thesis, Iowa State University

    Google Scholar 

  • van der Borst M, Schoonakker H (2001) An overview of PSA importance measures. Reliab Eng Syst Saf 72:241–245

    Article  Google Scholar 

  • Vogel T, Zwicky D, Joray D, Diggelmann M, Hoj NP (2009) Tragsicherheit der bestehenden Kunstbauten, Sicherheit des Verkehrssystems Strasse und dessen Kunstbauten, Bundesamt für Strassen, Dezember 2009, Bern

    Google Scholar 

  • Voigt J (2014) Beitrag zur Bestimmung der Tragfähigkeit bestehender Stahlbetonkonstruktionen auf Grundlage der Systemzuverlässigkeit. Dissertation, Siegen

    Google Scholar 

  • Vrijling JK, van Gelder PHAJM, Ouwerkerk SJ (2005) Criteria for acceptable risk in the Netherlands, Infrastructure Risk Management Processes, pp 143–157

    Google Scholar 

  • Wang N (2010a) Reliability-based condition assessment of existing highway bridges. Dissertation, Georgia Institute of Technology, Aug 2010

    Google Scholar 

  • Wang N (2010b) Reliability-based condition assessment of existing highway bridges. Dissertation, Georgia Institute of Technology, Aug 2010

    Google Scholar 

  • Weber M, Caspeele R, Schnell J, Glock C, Botte W (2018) Das neue fib Bulletin 80—Teilsicherheitsbeiwerte für die Nachrechnung bestehender Massivbauwerke. Beton- und Stahlbetonbau (in print)

    Google Scholar 

  • Wu Y-T, Shin Y, Sues RH, Cesare MA (2006) Probabilistic function evaluation system (ProFES) for reliability-based design. Struct Saf 28:164–195

    Article  Google Scholar 

  • Zentner I, Nadjarian A, Humbert N, Viallet E (2008) Estimation of fragility curves for seismic probabilistic risk assessment by means of numerical experiments. In: Graubner C-A, Schmidt H, Proske D (eds) 6th international probabilistic workshop, Darmstadt, Germany 2008, Technische Universität Darmstadt, pp 305–316, 26–27 Nov 2008

    Google Scholar 

  • Zerna W (1983) Grundlage der gegenwärtigen Sicherheitspraxis in der Bautechnik. In: S. Hartwig (ed) Große technische Gefahrenpotentiale: Risikoanalysen und Sicherheitsfragen, Hrsg. Springer Verlag: Berlin/Heidelberg, pp 99–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Proske .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Proske, D. (2018). Measures of Safety. In: Bridge Collapse Frequencies versus Failure Probabilities. Risk Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73833-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73833-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73832-1

  • Online ISBN: 978-3-319-73833-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics