Multiple Scattering in Green’s Function Formalism: Single-Channel and Multichannel Versions

  • Anna TaranukhinaEmail author
  • Alexander Novakovich
  • Calogero R. Natoli
  • Ondřej Šipr
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 204)


In this chapter, we present two versions of the multiple scattering (MS) theory in the real-space electronic Green’s function (GF) formalism: single-channel (MS-GF) and multichannel (MCMS-GF). While the first one based on the single-particle picture provides a tool for a precise description of MS processes, the second one allows us to take into account not only MS effects but also electron correlations and spin-orbit coupling on the same footing. Multichannel generalization of the MS-GF method relies on the Dyson integral equation relating the GF of a perturbed system with the GF of the corresponding unperturbed system. The second basic feature of the MCMS-GF approach is the use of the close-coupling method, which via Kohn variational principle for the reactance K-matrix gives rise to a set of the coupled integro-differential equations with the matrix of a potential. An iterative algorithm for solving this system has been developed to evaluate single-site multichannel scattering t-matrices through which the GF of the total many-atom system is expressed. In addition, some numerical aspects concerning the application of both versions are discussed with a focus on x-ray absorption spectroscopy.



A.T. would like to acknowledge financial support from the Ministry of Education and Science of the Russian Federation (project 3.5398.2017/8.9). Parts of this work have been funded by European FP7 MSNano network under Grant Agreement No. PIRSES-GA-2012-317554 and COST Action MP 1306 EUSpec.


  1. 1.
    K.H. Johnson, J. Chem. Phys. 45, 3085 (1966)ADSCrossRefGoogle Scholar
  2. 2.
    K.H. Johnson, F.C. Smith Jr., Chem. Phys. Lett. 7, 541 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    A.A. Abrikosov, L.P. Gorkov, I.Ye. Dzyaloshinski, Quantum Field Theoretical Methods in Statistical Physics, 2nd edn. (Pergamon Press, Oxford, 1965), p. 365Google Scholar
  4. 4.
    R.V. Vedrinskii, A.A. Novakovich, Phys. Met. Metallogr. 39(1), 7 (1975)Google Scholar
  5. 5.
    C.A. Ashley, S. Doniach, Phys. Rev. B 11, 1279 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    R.V. Vedrinskii, A.A. Novakovich, Phys. Met. Metallogr. 39(3), 486 (1975)Google Scholar
  7. 7.
    R.V. Vedrinskii, I.I. Gegusin, V.N. Datsyuk, V.L. Kraizman, A.A. Novakovich, Phys. Status Solidi B 111, 433 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    R.V. Vedrinskii, A.A. Novakovich, A.G. Bermus, M. Élango, A. Ausmees, A. Kikas, E. Nommiste, A. Saar, Phys. Solid State 35(7) (1993)Google Scholar
  9. 9.
    R.V. Vedrinskii, V.L. Kraizman, A.A. Novakovich, V.Sh. Machavariani, J. Phys.: Condens. Matter 4, 6155 (1992)Google Scholar
  10. 10.
    R.V. Vedrinskii, V.L. Kraizman, A.A. Novakovich, G.Yu. Machavariani, V.Sh. Machavariani, J. Phys.: Condens. Matter 6, 11045 (1994)Google Scholar
  11. 11.
    J. Kokubun, K. Ishida, D. Cabaret, F. Mauri, R.V. Vedrinskii, V.L. Kraizman, A.A. Novakovich, E.V. Krivitskii, V.E. Dmitrienko, Phys. Rev. B 69, 245103 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    C.R. Natoli, M. Benfatto, S. Doniach, Phys. Rev. B 34, 4682 (1986)ADSCrossRefGoogle Scholar
  13. 13.
    C.R. Natoli, M. Benfatto, C. Brouder, M.F. Ruitz López, D.L. Foulis, Phys. Rev. B 42, 1944 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    R.V. Vedrinskii, I.I. Gegusin, A.I. Taranukhina, in Abstract of the 6th International Conference on the X-ray absorption fine structure, York, 5-11 August 1990Google Scholar
  15. 15.
    A. Taranukhina, R. Vedrinskii, Bull. Am. Phys. Soc. 47(1), 701 (2002)Google Scholar
  16. 16.
    P. Krüger, C.R. Natoli, Phys. Rev. B 70, 245120 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    C.R. Natoli, P. Krüger, K. Hatada, K. Hayakawa, D. Sébilleau, O. Šipr, J. Phys. Condens. Matter 24, 365501 (2012)CrossRefGoogle Scholar
  18. 18.
    G. Arfken, Mathematical Methods for Physicist, 2nd edn. (Academic Press, New York, 1970)Google Scholar
  19. 19.
    C.R. Natoli, M. Benfatto, Phys. Rev. B 34, 4682 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    W. Kohn, Phys. Rev. 74, 1763 (1948)ADSCrossRefGoogle Scholar
  21. 21.
    P. Burke, M. Seaton, in Methods in Computational Physics, vol. 10, ed. by B. Alder, S. Fernbach, M. Rotenberg (Academic Press, New York, 1969), p. 9Google Scholar
  22. 22.
    F.M.F. de Groot, J.C. Fuggle, B.T. Thole, G.A. Sawatzky, Phys. Rev. B 41, 928 (1990)Google Scholar
  23. 23.
    E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1991)zbMATHGoogle Scholar
  24. 24.
    J.R. Taylor, Scattering theory (Wiley, 1972)Google Scholar
  25. 25.
    R.G. Newton, Scattering Theory of Waves and Particles, 2nd edn. (Springer, Heidelberg, 2008)Google Scholar
  26. 26.
    K. Hatada, K. Hayakawa, M. Benfatto, C.R. Natoli, Phys. Rev. B 76, 060102R1-4 (2007)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anna Taranukhina
    • 1
    Email author
  • Alexander Novakovich
    • 2
  • Calogero R. Natoli
    • 3
  • Ondřej Šipr
    • 4
  1. 1.Faculty of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  3. 3.INFN Laboratori Nazionali di FrascatiFrascatiItaly
  4. 4.Academy of Science of Czech RepublicPrague 6Czech Republic

Personalised recommendations