Advertisement

Implementation of Exact Diagonalization in KKR\(+\)DMFT

  • Ján Minár
  • Igor Di Marco
  • Jindřich Kolorenč
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 204)

Abstract

We describe an implementation of the LDA\(+\)DMFT method in the spr-kkr code. The auxiliary impurity model that is at the heart of the dynamical mean-field theory is solved by iterative diagonalization (the Lanczos method). We illustrate that the implemented scheme accurately models the electronic structure of Mott insulators, exemplified here by NiO.

Notes

Acknowledgements

J.K. acknowledges financial support from the Czech Science Foundation under the grant number 15-05872J. We thank the DFG for financial support via FOR1346. J.M. was supported by the CEDAMNF project (CZ.02.1.01/0.0/0.0/15_003/0000358), co-funded by the ERDF as part of the OP RDE program of the Ministry of Education, Youth and Sports (Czech Republic).

References

  1. 1.
    K. Held, Adv. Phys. 56, 829 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    B. Brandow, Adv. Phys. 26, 651 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    Z. Szotek, W.M. Temmerman, H. Winter, Phys. Rev. B 47(7), 4029 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    F. Aryasetiawan, O. Gunnarsson, Phys. Rev. Lett. 74(16), 3221 (1995).  https://doi.org/10.1103/PhysRevLett.74.3221ADSCrossRefGoogle Scholar
  5. 5.
    A. Fujimori, F. Minami, Phys. Rev. B 30, 957 (1984).  https://doi.org/10.1103/PhysRevB.30.957ADSCrossRefGoogle Scholar
  6. 6.
    P. Thunström, I. Di Marco, O. Eriksson, Phys. Rev. Lett. 109, 186401 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    J. Minár, L. Chioncel, A. Perlov, H. Ebert, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 72, 045125 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    J. Minár, J. Phys. Condens. Matter 23, 253201 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    L.V. Pourovskii, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 72(11), 115106 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    M.T. Czyżyk, G.A. Sawatzky, Phys. Rev. B 49, 14211 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    I.V. Solovyev, P.H. Dederichs, V.I. Anisimov, Phys. Rev. B 50, 16861 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    J. Kolorenč, A.B. Shick, A.I. Lichtenstein, Phys. Rev. B 92, 085125 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    M.W. Haverkort, M. Zwierzycki, O.K. Andersen, Phys. Rev. B 85, 165113 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Q. Si, M.J. Rozenberg, G. Kotliar, A.E. Ruckenstein, Phys. Rev. Lett. 72, 2761 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    J. Schött, I.L.M. Locht, E. Lundin, O. Grånäs, O. Eriksson, I. Di Marco, Phys. Rev. B 93, 075104 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    H. Ebert, D. Ködderitzsch, J. Minár, Rep. Prog. Phys. 74(9), 096501 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    J. Kuneš, V.I. Anisimov, S.L. Skornyakov, A.V. Lukoyanov, D. Vollhardt, Phys. Rev. Lett. 99, 156404 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    J. Braun, Rep. Prog. Phys. 59, 1267 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    J. Minár, J. Braun, H. Ebert, J. Electron. Spectrosc. Relat. Phenom. 189, 129 (2013)CrossRefGoogle Scholar
  21. 21.
    G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 53(24), 2339 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    Z.X. Shen, R.S. List, D.S. Dessau, B.O. Wells, O. Jepsen, A.J. Arko, R. Barttlet, C.K. Shih, F. Parmigiani, J.C. Huang, P.A.P. Lindberg, Phys. Rev. B 44, 3604 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ján Minár
    • 1
  • Igor Di Marco
    • 2
  • Jindřich Kolorenč
    • 3
  1. 1.New Technologies-Research CenterUniversity of West BohemiaPlzeňCzech Republic
  2. 2.Division of Materials Theory, Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.Institute of Physics, Czech Academy of SciencesPraha 8Czech Republic

Personalised recommendations