Introduction to (Multiple) Scattering Theory

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 204)

Abstract

In this introductory chapter, we develop the scattering theory necessary to understand the theoretical models underlying the multiple scattering codes. First, the elementary theory is presented and it is then formalized to introduce the different operators whose matrix elements are computed in the codes. Then, we extend the theory to the case of a collection of potentials, i.e. multiple scattering. Finally we outline the way cross-sections can be derived from the multiple scattering framework and give some practical examples.

References

  1. 1.
    T. Ikebe, Arch. Rat. Mech. Anal. 5(1) (1960); T. Ikebe, Pacific. J. Math. 15(511) (1965)Google Scholar
  2. 2.
    A. Bohm, Quantum Mechanics: Foundations and Applications, 3rd edn. (Springer, Berlin, 1993), p. 433Google Scholar
  3. 3.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley-VCH, New York, 1977), vol. 2, p. 910Google Scholar
  4. 4.
    L.S. Rodberg, R.M. Thaler, Introduction to the Quantum Theory of Scattering (Academic Press, New York, 1967), p. 6Google Scholar
  5. 5.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley-VCH, New York, 1977), vol. 1, p. 662Google Scholar
  6. 6.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), p. 437Google Scholar
  7. 7.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley-VCH, New York, 1977), vol. 1, pp. 930–931Google Scholar
  8. 8.
    C.J. Joachain, Quantum Collision Theory (North-Holland, Amsterdam, 1983), p. 67Google Scholar
  9. 9.
    M.-L. Xu, J.J. Barton, M.A. Van Hove, Phys. Rev. B 39, 8275 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    C.J. Joachain, Quantum Collision Theory (North-Holland, Amsterdam, 1983), p. 79Google Scholar
  11. 11.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley-VCH, New York, 1977), vol. 2, p. 917Google Scholar
  12. 12.
    L.S. Rodberg, R.M. Thaler, Introduction to the Quantum Theory of Scattering (Academic Press, New York, 1967), p. 114Google Scholar
  13. 13.
    W.E. Boyce, R.C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 7th edn. (Wiley, New York, 2001), pp. 211–212Google Scholar
  14. 14.
    R.G. Newton, Scattering Theory of Waves and Particles, 2nd edn. (Springer, Heidelberg, 2008), p. 182Google Scholar
  15. 15.
    R.G. Newton, Scattering Theory of Waves and Particles, 2nd edn. (Springer, Heidelberg, 2008), p. 177Google Scholar
  16. 16.
    L.S. Rodberg, R.M. Thaler, Introduction to the Quantum Theory of Scattering (Academic Press, New York, 1967), p. 179Google Scholar
  17. 17.
    D. Sébilleau, R. Gunnella, Z.-Y. Wu, S. Di Matteo, C.R. Natoli, Topical review. J. Phys. Condens. Matter 18, R175–R230 (2006)Google Scholar
  18. 18.
    L.S. Rodberg, R.M. Thaler, Introduction to the Quantum Theory of Scattering (Academic Press, New York, 1967), p. 184Google Scholar
  19. 19.
    D. Sébilleau, Phys. Rev. B 61, 14167 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    R.G. Newton, Scattering Theory of Waves and Particles, 2nd edn. (Springer, Heidelberg, 2008), p. 155Google Scholar
  21. 21.
    J.R. Taylor, Scattering Theory (Wiley, New York, 1972), pp. 28–35Google Scholar
  22. 22.
    H.A. Bethe, R. Jackiw, Intermediate Quantum Mechanics, 3rd edn. (Menlo Park, Benjamin/Cummings, 1986), p. 310Google Scholar
  23. 23.
    M. Danos, L.C. Maximon, J. Math. Phys. 6, 766 (1965)ADSCrossRefGoogle Scholar
  24. 24.
    K. Schwarz, in Selected Topics in Applications of Quantum Mechanics, Intech, 2015, ed. by Mohammad Reza Pahlavani, pp. 275–310Google Scholar
  25. 25.
    P.C. Tandy, R.M. Thaler, Phys. Rev. C 22, 2321 (1980)ADSCrossRefGoogle Scholar
  26. 26.
    L.D. Faddeev, in Mathematical Aspects of the Three-body Problem in the Quantum Scattering Theory, Israel Program for Scientific Translation, Jerusalem, 1965, p. 12Google Scholar
  27. 27.
    B.L. Györffy, in Fondamenti di Fisica dello Stato Solido, (Scuola Nazionale di Struttura della Materia, 1971); B.L. Györffy, M.J. Stott, in Band Structure Spectroscopy of Metals and Alloys, Academic Press, London, 1973, pp. 385–403 ed. by D.J. Fabian, L.M. WatsonGoogle Scholar
  28. 28.
    D. Sébilleau, C.R. Natoli, M. Gavaza, H. Zhao, F. Da Pieve, K. Hatada, Comput. Phys. Commun. 182, 2567–2579 (2011). for the first version. The latest version of the MsSpec package can be obtained from the author of the chapterGoogle Scholar
  29. 29.
    J.S. Faulkner, G.M. Stocks, Phys. Rev. B 8, 3222 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    T.A. Tyson, K.O. Hodgson, C.R. Natoli, M. Benfatto, Phys. Rev. B 46, 5997 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    M.A. Morrison, A.N. Feldt, Am. J. Phys. 75, 67 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    K.M. Watson, Phys. Rev. 89, 575 (1953)ADSCrossRefGoogle Scholar
  33. 33.
    C.R. Natoli, M. Benfatto, J. Phys. (France) C 8, 11 (1986)Google Scholar
  34. 34.
    D. Sébilleau, C.R. Natoli, J. Phys. Conf. Ser. 190, 012002 (2009)CrossRefGoogle Scholar
  35. 35.
    H.-F. Zhao, D. Sébilleau, Z.-Y. Wu, J. Phys. Condens. Matter 20, 275241 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    A. Filipponi, A. Di Cicco, C.R. Natoli, Phys. Rev. B 52, 15122 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    D. Sébilleau, J. Phys. A: Math. Gen. 31, 7157–7168 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    D.S. MacMillan, E.F. Redish, Phys. Rev. C 33, 804 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    L.S. Rodberg, R.M. Thaler, Introduction to the Quantum Theory of Scattering (Academic Press, New York, 1967), p. 196Google Scholar
  40. 40.
    L.I. Schiff, Quantum Mechanics (McGraw-Hill/Kogakusha, 1968), p. 314Google Scholar
  41. 41.
    L.I. Schiff, Quantum Mechanics (McGraw-Hill/Kogakusha, 1968), p. 336Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Physique de Rennes (IPR)Univ Rennes, CNRS, UMR 6251RennesFrance

Personalised recommendations