Advertisement

Abnormalities in Calcium Homeostasis

  • Ruben Diaz
  • Larisa Suárez-Ortega
Chapter

Abstract

Calcium plays an important role in a number of physiological processes as diverse as bone formation and turnover, neuronal cell excitability, muscle contractility, and blood clotting. Significant shifts in serum calcium concentration have adverse effects on these physiological functions. In children, maintenance of adequate calcium balance is particularly important since bone deposition and growth are closely linked to the availability of calcium. Higher organisms have developed mechanisms to regulate the extracellular concentration of calcium, normally affected by intermittent changes in calcium absorption in the gut, continuous mineral bone turnover, and calcium losses in the urine. Extracellular calcium levels are set within a very narrow range by the concerted action of several regulatory “calciotropic” hormones on calcium handling in the gastrointestinal tract, bone, and kidney. The abnormal function of calciotropic hormones or the failure of any of these organs to handle calcium properly can cause either hypo-or hypercalcemia. Treatment is directed at restoring normal calcium levels by either enhancing calcium availability or promoting its clearance from the extracellular compartment.

Keywords

Calcium Hypercalcemia Hypocalcemia Vitamin D Parathyroid hormone Phosphate Calcium-sensing receptor Hypoparathyroidism Hyperparathyroidism 

References

  1. 1.
    Diaz R, Fuleihan GE, Brown EM. Parathyroid hormone and polyhormones: production and export. In: Fray JCS, editor. Handbook of physiology. New York: Oxford University Press; 2000. p. 607–62.Google Scholar
  2. 2.
    Juppner H, Potts JT. The roles of parathyroid hormone and parathyroid hormone-related peptide in calcium metabolism and bone biology: their biological actions and receptors. In: Fray JCS, editor. Handbook of physiology. New York: Oxford University Press; 2000. p. 663–98.Google Scholar
  3. 3.
    Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81(1):239–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Slatopolsky E, Dusso A, Brown AJ. The role of phosphorus in the development of secondary hyperparathyroidism and parathyroid cell proliferation in chronic renal failure. Am J Med Sci. 1999;317(6):370–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Rubin DA, et al. A G protein-coupled receptor from zebrafish is activated by human parathyroid hormone and not by human or teleost parathyroid hormone-related peptide. Implications for the evolutionary conservation of calcium-regulating peptide hormones. J Biol Chem. 1999;274(33):23035–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Suva W, Winslow GA, Wettenhall RE, et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science. 1987;237(4817):893–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Kronenberg HM, Karaplis AC, Lanske B. Role of parathyroid hormone-related protein in skeletal development. Ann N Y Acad Sci. 1996;785:119–23.CrossRefPubMedGoogle Scholar
  8. 8.
    Kovacs CS, et al. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci U S A. 1996;93(26):15233–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bikle D, Adams J, Christakos S. Vitamin D: production, metabolism, mechanism of action, and clinical requirements. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Hoboken, NJ: Wiley; 2008. p. 141–9.CrossRefGoogle Scholar
  10. 10.
    Shimada T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001;98(11):6500–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fuss M, et al. Calcium and vitamin D metabolism in granulomatous diseases. Clin Rheumatol. 1992;11(1):28–36.CrossRefPubMedGoogle Scholar
  12. 12.
    Friedman PA. Calcium transport in the kidney. Curr Opin Nephrol Hypertens. 1999;8(5):589–95.CrossRefPubMedGoogle Scholar
  13. 13.
    Martin TJ, Moseley JM. Calcitonin. In: DeGroot LJ, Jameson JL, editors. Endocrinology. Philadelphia, PA: WB Saunders; 2001. p. 999–1008.Google Scholar
  14. 14.
    Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium and lactation. Endocr Rev. 1997;18:832–72.PubMedGoogle Scholar
  15. 15.
    Carpenter TO. Disorders in mineral metabolism in childhood. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Hoboken, NJ: Wiley; 2008. p. 349–53.CrossRefGoogle Scholar
  16. 16.
    Thakker RV. The molecular genetics of hypoparathyroidism. In: Bilezekian JP, Levine MA, Marcus R, editors. The parathyroids. San Diego, CA: Academic; 2001. p. 779–90.CrossRefGoogle Scholar
  17. 17.
    Tomar N, Bora H, Singh R, et al. Presence and significance of a R110W mutation in the DNA-binding domain of GCM2 gene in patients with isolated hypoparathyroidism and their family members. Eur J Endocrinol. 2010;162(2):407–21.CrossRefGoogle Scholar
  18. 18.
    Arnold A, et al. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Endocrinol Investig. 2013;36(11):1121–7.CrossRefGoogle Scholar
  19. 19.
    Yesiltepe Mutiu G, et al. A novel de novo GATA binding protein 3 mutation in a Turkish boy with hypoparathyroidism, deafness, and renal dysplasia syndrome. J Clin Res Pediatr Endocrinol. 2015;7(4):344–8.CrossRefGoogle Scholar
  20. 20.
    Carey AH, et al. Molecular genetic study of the frequency of monosomy 22q11 in DiGeorge syndrome. Am J Hum Genet. 1992;51(5):964–70.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Parvari R, et al. Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat Genet. 2002;32(3):448–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Thakker RV. Molecular genetics of mineral metabolic disorders. J Inherit Metab Dis. 1992;15(4):592–609.CrossRefPubMedGoogle Scholar
  23. 23.
    Whyte MP. Autoimmune hypoparathyroidism. In: Bilezekian JP, Levine MA, Marcus R, editors. The parathyroids. San Diego, CA: Academic; 2001. p. 791–806.CrossRefGoogle Scholar
  24. 24.
    Bettinelli A, et al. Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: bartter and Gitelman syndromes. J Pediatr. 1992;120(1):38–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Cardenas-Rivero N, et al. Hypocalcemia in critically ill children. J Pediatr. 1989;114(6):946–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Rubin MR, Levin MA. Hypoparathyroidism and pseudohypoparathyroidism. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Hoboken, NJ: Wiley; 2008. p. 354–61.CrossRefGoogle Scholar
  27. 27.
    Lips P, van Schoor NM, Bravenboer N. Vitamin D-related disorders. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Hoboken, NJ: Wiley; 2008. p. 329–35.CrossRefGoogle Scholar
  28. 28.
    Cusano NE, et al. Use of parathyroid hormone in hypoparathyroidism. J Endocrinol Investig. 2013;36(11):1121–7.CrossRefGoogle Scholar
  29. 29.
    Arnold A. Genetic basis of endocrine disease 5. Molecular genetics of parathyroid gland neoplasia. J Clin Endocrinol Metab. 1993;77(5):1108–12.PubMedGoogle Scholar
  30. 30.
    Chandrasekharappa SC, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science. 1997;276(5311):404–7.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mulligan LM, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363(6428):458–60.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Haden ST, et al. The effect of lithium on calcium-induced changes in adrenocorticotrophin levels. J Clin Endocrinol Metab. 1999;84(1):198–200.PubMedGoogle Scholar
  33. 33.
    Schipani E, Kruse K, Juppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science. 1995;268(5207):98–100.CrossRefGoogle Scholar
  34. 34.
    Egbuna OI, Brown EM. Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract Res Clin Rheumatol. 2008;22(1):129–48.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rigby WF. The immunobiology of vitamin D. Immunol Today. 1988;9(2):54–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Burman KD, et al. Ionized and total serum calcium and parathyroid hormone in hyperthyroidism. Ann Intern Med. 1976;84:668–71.CrossRefPubMedGoogle Scholar
  37. 37.
    Britto JM, et al. Osteoblasts mediate thyroid hormone stimulation of osteoclastic bone resorption. Endocrinology. 1994;134(1):169–76.CrossRefPubMedGoogle Scholar
  38. 38.
    Bergstrom WH. Hypercalciuria and hypercalcemia complicating immobilization. Am J Dis Child. 1978;132(6):553–4.PubMedGoogle Scholar
  39. 39.
    Valentic JP, Elias AN, Weinstein GD. Hypercalcemia associated with oral isotretinoin in the treatment of severe acne. JAMA. 1983;250(14):1899–900.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Garabedian M, et al. Elevated plasma 1,25-dihydroxyvitamin D concentrations in infants with hypercalcemia and an elfin facies. N Engl J Med. 1985;312(15):948–52.CrossRefPubMedGoogle Scholar
  41. 41.
    Taylor AB, Stern PH, Bell NH. Abnormal regulation of circulating 25-hydroxyvitamin D in the Williams syndrome. N Engl J Med. 1982;306(16):972–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Sharata H, Postellon DC, Hashimoto K. Subcutaneous fat necrosis, hypercalcemia, and prostaglandin E. Pediatr Dermatol. 1995;12(1):43–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Kruse K, Irle U, Uhlig R. Elevated 1,25-dihydroxyvitamin D serum concentrations in infants with subcutaneous fat necrosis. J Pediatr. 1993;122(3):460–3.CrossRefPubMedGoogle Scholar
  44. 44.
    Chen CC, et al. Comparison of parathyroid imaging with technetium-99 m- pertechnetate/sestamibi subtraction, double-phase technetium-99 m- sestamibi and technetium-99 m-sestamibi SPECT. J Nucl Med. 1997;38(6):834–9.PubMedGoogle Scholar
  45. 45.
    Boggs JE, et al. Intraoperative parathyroid hormone monitoring as an adjunct to parathyroidectomy. Surgery. 1996;120(6):954–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.EndocrinologySant Joan de Deu-Barcelona Children’s HospitalBarcelonaSpain

Personalised recommendations