Advertisement

Mineralocorticoid Disorders and Endocrine Hypertension

  • David W. Cooke
Chapter

Abstract

The renin-angiotensin-aldosterone system regulates intravascular volume and the serum potassium concentration through its regulation of sodium and potassium handling in the distal nephron of the kidneys. Isolated disorders of this system in children are rare but when present can cause significant morbidity from either deficient or excess mineralocorticoid action. This chapter describes the physiology of mineralocorticoid action followed by the mechanisms responsible for disordered mineralocorticoid action. For each disorder, the appropriate diagnostic evaluation and treatment recommendations are presented.

Keywords

Aldosterone Angiotensin Cortisol Cortisone Hyperkalemia Hypertension Hypokalemia Hyponatremia Renin 

References

  1. 1.
    Rainey W. Adrenal zonation: clues from 11beta-hydroxylase and aldosterone synthase. Mol Cel Endocrinol. 1999;151:151–60.CrossRefGoogle Scholar
  2. 2.
    Krozowski ZS, Funder JW. Renal mineralocorticoid receptors and hippocampal corticosterone-binding species have identical intrinsic steroid specificity. Proc Natl Acad Sci U S A. 1983;80(19):6056–60.CrossRefGoogle Scholar
  3. 3.
    Funder JW, Pearce PT, Smith R, Smith AIAN. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science. 1988;242(4878):583–5.CrossRefGoogle Scholar
  4. 4.
    Funder JW. Apparent mineralocorticoid excess. J Steroid Biochem Mol Biol. 2015;2016:2015–7.Google Scholar
  5. 5.
    Riepe FG. Pseudohypoaldosteronism. Endocr Dev. 2013;24:86–95.CrossRefGoogle Scholar
  6. 6.
    Dooley R, Harvey BJ, Thomas W. Non-genomic actions of aldosterone: from receptors and signals to membrane targets. Mol Cell Endocrinol. 2012;350(2):223–34.CrossRefGoogle Scholar
  7. 7.
    White PC. Aldosterone synthase deficiency and related disorders. Mol Cell Endocrinol. 2004;217(1–2):81–7.CrossRefGoogle Scholar
  8. 8.
    Geller DS, Rodriguez-Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, et al. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet. 1998;19(3):279–81.CrossRefGoogle Scholar
  9. 9.
    Riepe FG, Finkeldei J, De Sanctis L, Einaudi S, Testa A, Karges B, et al. Elucidating the underlying molecular pathogenesis of NR3C2 mutants causing autosomal dominant pseudohypoaldosteronism type 1. J Clin Endocrinol Metab. 2006;91(11):4552–61.CrossRefGoogle Scholar
  10. 10.
    Chang SS, Grunder S, Hanukoglu A, Rösler A, Mathew PM, Hanukoglu I, et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996;12(3):248–53.CrossRefGoogle Scholar
  11. 11.
    Bogdanović R, Stajić N, Putnik J, Paripović A. Transient type 1 pseudo-hypoaldosteronism: report on an eight-patient series and literature review. Pediatr Nephrol. 2009;24(11):2167–75.CrossRefGoogle Scholar
  12. 12.
    Deppe CE, Heering PJ, Viengchareun SAY, Grabensee B, Farman N, Lombes M. Cyclosporine A and FK506 inhibit transcriptional activity of the human mineralocorticoid receptor: a cell-based model to investigate partial aldosterone resistance in kidney transplantation. Endocrinology. 2002;143(5):1932–41.CrossRefGoogle Scholar
  13. 13.
    Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–916.CrossRefGoogle Scholar
  14. 14.
    Korah HE, Scholl UI. An update on familial hyperaldosteronism. Horm Metab Res. 2015;47(13):941–6.CrossRefGoogle Scholar
  15. 15.
    Scholl UI, Healy JM, Thiel A, Fonseca AL, Brown TC, Kunstman JW, et al. Novel somatic mutations in primary hyperaldosteronism are related to the clinical, radiological and pathological phenotype. Clin Endocrinol. 2015;83(6):779–89.CrossRefGoogle Scholar
  16. 16.
    Gatta-Cherifi B, Chabre O, Murat A, Niccoli P, Cardot-Bauters C, Rohmer V, et al. Adrenal involvement in MEN1. Analysis of 715 cases from the Groupe d’étude des Tumeurs Endocrines database. Eur J Endocrinol. 2012;166(2):269–79.CrossRefGoogle Scholar
  17. 17.
    Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol. 2006;48(11):2293–300.CrossRefGoogle Scholar
  18. 18.
    Geller DS, Zhang J, Wisgerhof MV, Shackleton C, Kashgarian M, Lifton RP. A novel form of human mendelian hypertension featuring nonglucocorticoid- remediable aldosteronism. J Clin Endocrinol Metab. 2008;93(8):3117–23.CrossRefGoogle Scholar
  19. 19.
    Mussa A, Camilla R, Monticone S, Porta F, Tessaris D, Verna F, et al. Polyuric-polydipsic syndrome in a pediatric case of non-glucocorticoid remediable familial hyperaldosteronism. Endocr J. 2012;59(6):497–502.CrossRefGoogle Scholar
  20. 20.
    Stowasser M, Sharman J, Leano R, Gordon RD, Ward G, Cowley D, et al. Evidence for abnormal left ventricular structure and function in normotensive individuals with familial hyperaldosteronism type I. J Clin Endocrinol Metab. 2005;90(9):5070–6.CrossRefGoogle Scholar
  21. 21.
    Milliez P, Girerd X, Plouin P-F, Blacher J, Safar ME, Mourad J-J. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45(8):1243–8.CrossRefGoogle Scholar
  22. 22.
    Shera AH, Baba AA, Bakshi IH, Lone IA. Recurrent malignant juxtaglomerular cell tumor: a rare cause of malignant hypertension in a child. J Indian Assoc Pediatr Surg. 2011;16(4):152–4.CrossRefGoogle Scholar
  23. 23.
    Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355(6357):262–5.CrossRefGoogle Scholar
  24. 24.
    Dluhy RG, Anderson B, Harlin B, Ingelfinger J, Lifton R. Glucocorticoid-remediable aldosteronism is associated with severe hypertension in early childhood. J Pediatr. 2001;138(5):715–20.CrossRefGoogle Scholar
  25. 25.
    Litchfield WR, Anderson BF, Weiss RJ, Lifton RP, Dluhy RG. Intracranial aneurysm and hemorrhagic stroke in glucocorticoid-remediable aldosteronism. Hypertension. 1998;31(1 Pt 2):445–50.CrossRefGoogle Scholar
  26. 26.
    New MI, Geller DS, Fallo F, Wilson RC, Quinkler M, et al. Monogenic low renin hypertension. Trends Endocrinol Metab. 2005;16(3):92–7.CrossRefGoogle Scholar
  27. 27.
    Moudgil A, Rodich G, Jordan SC, Kamil ES. Nephrocalcinosis and renal cysts associated with apparent mineralocorticoid excess syndrome. Pediatr Nephrol. 2000;15(1–2):60–2.CrossRefGoogle Scholar
  28. 28.
    Ferrari P. The role of 11β-hydroxysteroid dehydrogenase type 2 in human hypertension. Biochim Biophys Acta. 2010;1802(12):1178–87.CrossRefGoogle Scholar
  29. 29.
    Sontia B, Mooney J, Gaudet L, Touyz RM. Pseudohyperaldosteronism, liquorice, and hypertension. J Clin Hypertens (Greenwich). 2008;10(2):153–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PediatricsJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations