Endocrinologic Sequelae of Anorexia Nervosa and Obesity

  • Amy Fleischman
  • Catherine M. Gordon


Anorexia nervosa (AN) is a severe psychiatric and medical condition. Eighty-five percent of patients with AN present between the ages of 13 and 20 years during a critical period for growth, pubertal development, and maximal bone accretion that culminates in peak bone mass. The disorder can result in a compromise in each of these important endocrinologic events, with lifelong sequelae. Recent trends demonstrate an earlier age of onset of AN, and it is recognized that onset at a young age is associated with poor growth and bone health outcomes. More boys are also presenting with restricted eating, with accompanying testosterone deficiency and other endocrine alterations. Patients with AN have a characteristic clinical picture of endocrine dysfunction, including amenorrhea in girls, abnormal temperature regulation, elevated growth hormone (GH) levels, hypercortisolemia, and abnormal eating suggestive of hypothalamic or pituitary dysfunction. Therefore, endocrine function has been studied extensively in these patients. The multiple endocrine abnormalities appear to represent an adaptation to the starvation state.

Obesity, defined by weight above the 95% for age and gender based on standardized growth curves (Centers for Disease Control and Prevention (CDC) (2000)), is a growing public health crisis in the United States and worldwide. Over 30% of children and adolescents are overweight or obese, almost 17% are obese, and the prevalence does not appear to be plateauing in this age range. The accumulation of adiposity during puberty contributes to the development of multiple metabolic and endocrinologic abnormalities. Adolescents are growing rapidly and progressing through pubertal changes and, therefore, teleologically are programmed for efficiency in fuel utilization in preparation for the reproductive phase in life. Therefore, when adolescents gain excess weight and become obese, the physiologic insulin resistance and high levels of growth hormone, estrogens and androgens, lead to pathologic insulin resistance and resultant abnormalities in glycemia, lipids, liver function, musculoskeletal functioning, and reproductive function. In addition, obese adolescents demonstrate an endocrine profile that in some aspects is the polar opposite from anorexia nervosa, but with some overlapping features including amenorrhea, abnormal growth hormone secretion, hypercortisolemia, and altered appetite and metabolic rate due to central signaling pathway disturbances. Obesity clearly represents a pathologic state, that of excess adiposity resulting in other compensatory mechanisms being activated.


Anorexia nervosa Malnutrition Bone health Bone mineral density Hypothalamic amenorrhea Obesity Insulin Resistance Metabolic syndrome PCOS Pseudo-Cushing syndrome 


  1. 1.
    Bruch H. Thin fat people. J Am Med Womens Assoc. 1973;28(4):187–8.Google Scholar
  2. 2.
    Smink FR, van Hoeken D, Hoek HW. Epidemiology of eating disorders: incidence, prevalence and mortality rates. Curr Psychiatry Rep. Aug 2012;14(4):406–14.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lucas AR, Beard CM, O'Fallon WM, Kurland LT. 50-year trends in the incidence of anorexia nervosa in Rochester, Minn.: a population-based study. Am J Psychiatry. 1991;148(7):917–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Shu CY, Limburg K, Harris C, McCormack J, Hoiles KJ, Hamilton MJ, et al. Clinical presentation of eating disorders in young males at a tertiary setting. J Eat Disord. 2015;3(1):39.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Misra M, Klibanski A. Neuroendocrine consequences of anorexia nervosa in adolescents. Endocr Dev. 2010;17:197–214.PubMedCrossRefGoogle Scholar
  6. 6.
    Donaldson AA, Gordon CM. Skeletal complications of eating disorders. Metabolism. 2015;64(9):943–51.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Favaro A, Caregaro L, Tenconi E, Bosello R, Santonastaso P. Time trends in age at onset of anorexia nervosa and bulimia nervosa. J Clin Psychiatry. 2009;70(12):1715–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Favaro A, Tenconi E, Degortes D, Soave M, Zanetti T, Nardi MT, et al. Association between low height and eating disorders: cause or effect? Int J Eat Disord. 2007;40(6):549–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Hall CH, Hewitt G, Stevens SL. Assessment and management of bone health in adolescents with anorexia nervosa. Part two: bone health in adolescents with anorexia nervosa. J Pediatr Adolesc Gynecol. 2008;21(4):221–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington: American Psychiatric Publishing; 2013.CrossRefGoogle Scholar
  11. 11.
    Gold PW, Gwirtsman H, Avgerinos PC, Nieman LK, Gallucci WT, Kaye W, et al. Abnormal hypothalamic-pituitary-adrenal function in anorexia nervosa. Pathophysiologic mechanisms in underweight and weight-corrected patients. N Engl J Med. 1986;314(21):1335–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Licinio J, Wong ML, Gold PW. The hypothalamic-pituitary-adrenal axis in anorexia nervosa. Psychiatry Res. 1996;62(1):75–83.PubMedCrossRefGoogle Scholar
  13. 13.
    Boyar RM, Hellman LD, Roffwarg H, Katz J, Zumoff B, O'Connor J, et al. Cortisol secretion and metabolism in anorexia nervosa. N Engl J Med. 1977;296(4):190–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Walsh BT, Roose SP, Katz JL, Dyrenfurth I, Wright L, Vande Wiele R, et al. Hypothalamic-pituitary-adrenal-cortical activity in anorexia nervosa and bulimia. Psychoneuroendocrinology. 1987;12(2):131–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Misra M, Miller KK, Almazan C, Ramaswamy K, Lapcharoensap W, Worley M, et al. Alterations in cortisol secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J Clin Endocrinol Metab. 2004;89(10):4972–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Doerr P, Fichter M, Pirke KM, Lund R. Relationship between weight gain and hypothalamic pituitary adrenal function in patients with anorexia nervosa. J Steroid Biochem. 1980;13(5):529–37.PubMedCrossRefGoogle Scholar
  17. 17.
    Schweitzer I, Szmukler GI, Maguire KP, Harrison LC, Tuckwell V, Davies BM. The dexamethasone suppression test in anorexia nervosa. The influence of weight, depression, adrenocorticotrophic hormone and dexamethasone. Br J Psychiatry. 1990;157:713–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Estour B, Pugeat M, Lang F, Lejeune H, Broutin F, Pellet J, et al. Rapid escape of cortisol from suppression in response to i.v. dexamethasone in anorexia nervosa. Clin Endocrinol. 1990;33(1):45–52.CrossRefGoogle Scholar
  19. 19.
    Hotta M, Shibasaki T, Masuda A, Imaki T, Demura H, Ling N, et al. The responses of plasma adrenocorticotropin and cortisol to corticotropin-releasing hormone (CRH) and cerebrospinal fluid immunoreactive CRH in anorexia nervosa patients. J Clin Endocrinol Metab. 1986;62(2):319–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Sirinathsinghji DJ, Mills IH. Concentration patterns of plasma dehydroepiandrosterone, delta 5-androstenediol and their sulphates, testosterone and cortisol in normal healthy women and in women with anorexia nervosa. Acta Endocrinol. 1985;108(2):255–60.PubMedGoogle Scholar
  21. 21.
    Devesa J, Pérez-Fernández R, Bokser L, Gaudiero GJ, Lima L, Casanueva FF. Adrenal androgen secretion and dopaminergic activity in anorexia nervosa. Horm Metab Res. 1988;20(1):57–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Monteleone P, Luisi M, Colurcio B, Casarosa E, Monteleone P, Ioime R, et al. Plasma levels of neuroactive steroids are increased in untreated women with anorexia nervosa or bulimia nervosa. Psychosom Med. 2001;63(1):62–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Estour B, Germain N, Diconne E, Frere D, Cottet-Emard JM, Carrot G, et al. Hormonal profile heterogeneity and short-term physical risk in restrictive anorexia nervosa. J Clin Endocrinol Metab. 2010;95(5):2203–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Miller KK, Lawson EA, Mathur V, Wexler TL, Meenaghan E, Misra M, et al. Androgens in women with anorexia nervosa and normal-weight women with hypothalamic amenorrhea. J Clin Endocrinol Metab. 2007;92(4):1334–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Gordon CM, Goodman E, Emans SJ, Grace E, Becker KA, Rosen CJ, et al. Physiologic regulators of bone turnover in young women with anorexia nervosa. J Pediatr. 2002;141(1):64–70.PubMedCrossRefGoogle Scholar
  26. 26.
    Divasta AD, Feldman HA, Giancaterino C, Rosen CJ, Leboff MS, Gordon CM. The effect of gonadal and adrenal steroid therapy on skeletal health in adolescents and young women with anorexia nervosa. Metabolism. 2012;61(7):1010–20.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    DiVasta AD, Feldman HA, Beck TJ, LeBoff MS, Gordon CM. Does hormone replacement normalize bone geometry in adolescents with anorexia nervosa? J Bone Miner Res. 2014;29(1):151–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Nozaki T, Tamai H, Matsubayashi S, Komaki G, Kobayashi N, Nakagawa T. Insulin response to intravenous glucose in patients with anorexia nervosa showing low insulin response to oral glucose. J Clin Endocrinol Metab. 1994;79(1):217–22.PubMedGoogle Scholar
  29. 29.
    Castillo M, Scheen A, Lefebvre PJ, Luyckx AS. Insulin-stimulated glucose disposal is not increased in anorexia nervosa. J Clin Endocrinol Metab. 1985;60(2):311–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Zuniga-Guajardo S, Garfinkel PE, Zinman B. Changes in insulin sensitivity and clearance in anorexia nervosa. Metabolism. 1986;35(12):1096–100.PubMedCrossRefGoogle Scholar
  31. 31.
    Gordon CM, Emans SJ, DuRant RH, Mantzoros C, Grace E, Harper GP, et al. Endocrinologic and psychological effects of short-term dexamethasone in anorexia nervosa. Eat Weight Disord. 2000;5(3):175–82.PubMedGoogle Scholar
  32. 32.
    Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest. 2003;111(9):1409–21.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Grinspoon S, Gulick T, Askari H, Landt M, Lee K, Anderson E, et al. Serum leptin levels in women with anorexia nervosa. J Clin Endocrinol Metab. 1996;81(11):3861–3.PubMedGoogle Scholar
  34. 34.
    Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382(6588):250–2.PubMedCrossRefGoogle Scholar
  35. 35.
    Audi L, Mantzoros CS, Vidal-Puig A, Vargas D, Gussinye M, Carrascosa A. Leptin in relation to resumption of menses in women with anorexia nervosa. Mol Psychiatry. 1998;3(6):544–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Barash IA, Cheung CC, Weigle DS, Ren H, Kabigting EB, Kuijper JL, et al. Leptin is a metabolic signal to the reproductive system. Endocrinology. 1996;137(7):3144–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Sienkiewicz E, Magkos F, Aronis KN, Brinkoetter M, Chamberland JP, Chou S, et al. Long-term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypoleptinemic women. Metabolism. 2011;60(9):1211–21.CrossRefPubMedGoogle Scholar
  38. 38.
    Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, et al. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med. 2004;351(10):987–97.CrossRefPubMedGoogle Scholar
  39. 39.
    Karczewska-Kupczewska M, Straczkowski M, Adamska A, Nikołajuk A, Otziomek E, Górska M, et al. Insulin sensitivity, metabolic flexibility, and serum adiponectin concentration in women with anorexia nervosa. Metabolism. 2010;59(4):473–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Tagami T, Satoh N, Usui T, Yamada K, Shimatsu A, Kuzuya H. Adiponectin in anorexia nervosa and bulimia nervosa. J Clin Endocrinol Metab. 2004;89(4):1833–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Misra M, Miller KK, Cord J, Prabhakaran R, Herzog DB, Goldstein M, et al. Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J Clin Endocrinol Metab. 2007;92(6):2046–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Modan-Moses D, Stein D, Pariente C, Yaroslavsky A, Ram A, Faigin M, et al. Modulation of adiponectin and leptin during refeeding of female anorexia nervosa patients. J Clin Endocrinol Metab. 2007;92(5):1843–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Russell M, Misra M. Influence of ghrelin and adipocytokines on bone mineral density in adolescent female athletes with amenorrhea and eumenorrheic athletes. Med Sport Sci. 2010;55:103–13.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gordon CM. Clinical practice. Functional hypothalamic amenorrhea. N Engl J Med. 2010;363(4):365–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Landon J, Greenwood FC, Stamp TC, Wynn V. The plasma sugar, free fatty acid, cortisol, and growth hormone response to insulin, and the comparison of this procedure with other tests of pituitary and adrenal function. II. In patients with hypothalamic or pituitary dysfunction or anorexia nervosa. J Clin Invest. 1966;45(4):437–49.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hurd HP, Palumbo PJ, Gharib H. Hypothalamic-endocrine dysfunction in anorexia nervosa. Mayo Clin Proc. 1977;52(11):711–6.PubMedGoogle Scholar
  47. 47.
    Garfinkel PE, Brown GM, Stancer HC, Moldofsky H. Hypothalamic-pituitary function in anorexia nervosa. Arch Gen Psychiatry. 1975;32(6):739–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Newman MM, Halmi KA. The endocrinology of anorexia nervosa and bulimia nervosa. Endocrinol Metab Clin N Am. 1988;17(1):195–212.Google Scholar
  49. 49.
    Fazeli PK, Lawson EA, Prabhakaran R, Miller KK, Donoho DA, Clemmons DR, et al. Effects of recombinant human growth hormone in anorexia nervosa: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2010;95(11):4889–97.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Casper RC, Davis JM, Pandey GN. The effect of the nutritional status and weight changes on hypothalamic function test in anorexia nervosa. In: Vigersky RA, editor. Anorexia nervosa. New York: Raven Press; 1977. p. 137–48.Google Scholar
  51. 51.
    Sherman BM, Halmi KA. Effect of nutritional rehabilitation on hypothalamic-pituitary function in anorexia nervosa. In: Vigersky RA, editor. Anorexia nervosa. New York: Raven Press; 1977. p. 211–24.Google Scholar
  52. 52.
    Sizonenko PC, Rabinovitch A, Schneider P, Paunier L, Wollheim CB, Zahnd G. Plasma growth hormone, insulin, and glucagon responses to arginine infusion in children and adolescents with idiopathic short stature, isolated growth hormone deficiency, panhypopituitarism, and anorexia nervosa. Pediatr Res. 1975;9(9):733–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Blickle JF, Reville P, Stephan F, Meyer P, Demangeat C, Sapin R. The role of insulin, glucagon and growth hormone in the regulation of plasma glucose and free fatty acid levels in anorexia nervosa. Horm Metab Res. 1984;16(7):336–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Moshang TJ, Parks JS, Baker L, Vaidya V, Utiger RD, Bongiovanni AM, et al. Low serum triiodothyronine in patients with anorexia nervosa. J Clin Endocrinol Metab. 1975;40(3):470–3.PubMedCrossRefGoogle Scholar
  55. 55.
    Leslie RD, Isaacs AJ, Gomez J, Raggatt PR, Bayliss R. Hypothalamo-pituitary-thyroid function in anorexia nervosa: influence of weight gain. Br Med J. 1978;2(6136):526–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wakeling A, de Souza VF, Gore MB, Sabur M, Kingstone D, Boss AM. Amenorrhoea, body weight and serum hormone concentrations, with particular reference to prolactin and thyroid hormones in anorexia nervosa. Psychol Med. 1979;9(2):265–72.PubMedCrossRefGoogle Scholar
  57. 57.
    Vigersky RA, Loriaux DL, Andersen AE, Mecklenburg RS, Vaitukaitis JL. Delayed pituitary hormone response to LRF and TRF in patients with anorexia nervosa and with secondary amenorrhea associated with simple weight loss. J Clin Endocrinol Metab. 1976;43(4):893–900.PubMedCrossRefGoogle Scholar
  58. 58.
    Jeuniewic N, Brown GM, Garfinkel PE, Moldofsky H. Hypothalamic function as related to body weight and body fat in anorexia nervosa. Psychosom Med. 1978;40(3):187–98.PubMedCrossRefGoogle Scholar
  59. 59.
    Boyar RM, Katz J, Finkelstein JW, Kapen S, Weiner H, Weitzman ED, et al. Anorexia nervosa. Immaturity of the 24-hour luteinizing hormone secretory pattern. N Engl J Med. 1974;291(17):861–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Falk JR, Halmi KA. Amenorrhea in anorexia nervosa: examination of the critical body weight hypothesis. Biol Psychiatry. 1982;17(7):799–806.PubMedGoogle Scholar
  61. 61.
    Knuth UA, Hull MG, Jacobs HS. Amenorrhoea and loss of weight. Br J Obstet Gynaecol. 1977;84(11):801–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Frisch RE, McArthur JW. Menstrual cycles: fatness as a determinant of minimum weight for height necessary for their maintenance or onset. Science. 1974;185(4155):949–51.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Shomento SH, Kreipe RE. Menstruation and fertility following anorexia nervosa. Adolesc Pediatr Gynecol. 1995;7(3):142–6.CrossRefGoogle Scholar
  64. 64.
    Hotta M, Shibasaki T, Sato K, Demura H. The importance of body weight history in the occurrence and recovery of osteoporosis in patients with anorexia nervosa: evaluation by dual X-ray absorptiometry and bone metabolic markers. Eur J Endocrinol. 1998;139(3):276–83.PubMedCrossRefGoogle Scholar
  65. 65.
    Katz JL, Boyar R, Roffwarg H, Hellman L, Weiner H. Weight and circadian luteinizing hormone secretory pattern in anorexia nervosa. Psychosom Med. 1978;40(7):549–67.PubMedCrossRefGoogle Scholar
  66. 66.
    Arimura C, Nozaki T, Takakura S, Kawai K, Takii M, Sudo N, et al. Predictors of menstrual resumption by patients with anorexia nervosa. Eat Weight Disord. 2010;15(4):e226–33.PubMedGoogle Scholar
  67. 67.
    Mecklenburg RS, Loriaux DL, Thompson RH, Andersen AE, Lipsett MB. Hypothalamic dysfunction in patients with anorexia nervosa. Medicine (Baltimore). 1974;53(2):147–59.CrossRefGoogle Scholar
  68. 68.
    Hill P, Wynder F. Diet and prolactin release. Lancet. 1976;2(7989):806–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Nishita JK, Ellinwood EHJ, Rockwell WJ, Kuhn CM, Hoffman GWJ, McCall WV, et al. Abnormalities in the response of plasma arginine vasopressin during hypertonic saline infusion in patients with eating disorders. Biol Psychiatry. 1989;26(1):73–86.PubMedCrossRefGoogle Scholar
  70. 70.
    Demitrack MA, Lesem MD, Listwak SJ, Brandt HA, Jimerson DC, Gold PW. CSF oxytocin in anorexia nervosa and bulimia nervosa: clinical and pathophysiologic considerations. Am J Psychiatry. 1990;147(7):882–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Bailer UF, Kaye WH. A review of neuropeptide and neuroendocrine dysregulation in anorexia and bulimia nervosa. Curr Drug Targets CNS Neurol Disord. 2003;2(1):53–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Tolle V, Kadem M, Bluet-Pajot MT, Frere D, Foulon C, Bossu C, et al. Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women. J Clin Endocrinol Metab. 2003;88(1):109–16.PubMedCrossRefGoogle Scholar
  73. 73.
    Soriano-Guillén L, Barrios V, Campos-Barros A, Argente J. Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation. J Pediatr. 2004;144(1):36–42.PubMedCrossRefGoogle Scholar
  74. 74.
    Misra M, Miller KK, Tsai P, Gallagher K, Lin A, Lee N, et al. Elevated peptide YY levels in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab. 2006;91(3):1027–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Stock S, Leichner P, Wong AC, Ghatei MA, Kieffer TJ, Bloom SR, et al. Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents. J Clin Endocrinol Metab. 2005;90(4):2161–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73(3):555–63.PubMedCrossRefGoogle Scholar
  77. 77.
    Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG. Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med. 1991;325(23):1597–600.PubMedCrossRefGoogle Scholar
  78. 78.
    Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75(4):1060–5.PubMedGoogle Scholar
  79. 79.
    Rigotti NA, Nussbaum SR, Herzog DB, Neer RM. Osteoporosis in women with anorexia nervosa. N Engl J Med. 1984;311(25):1601–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Kaplan FS, Pertschuk M, Fallon M, Haddad J. Osteoporosis and hip fracture in a young woman with anorexia nervosa. Clin Orthop Relat Res. 1986;212:250–4.Google Scholar
  81. 81.
    Bachrach LK, Guido D, Katzman D, Litt IF, Marcus R. Decreased bone density in adolescent girls with anorexia nervosa. Pediatrics. 1990;86(3):440–7.PubMedGoogle Scholar
  82. 82.
    Stefanis N, Mackintosh C, Abraha HD, Treasure J, Moniz C. Dissociation of bone turnover in anorexia nervosa. Ann Clin Biochem. 1998;35(Pt 6):709–16.PubMedCrossRefGoogle Scholar
  83. 83.
    Klibanski A, Biller BM, Schoenfeld DA, Herzog DB, Saxe VC. The effects of estrogen administration on trabecular bone loss in young women with anorexia nervosa. J Clin Endocrinol Metab. 1995;80(3):898–904.PubMedGoogle Scholar
  84. 84.
    Golden NH, Lanzkowsky L, Schebendach J, Palestro CJ, Jacobson MS, Shenker IR. The effect of estrogen-progestin treatment on bone mineral density in anorexia nervosa. J Pediatr Adolesc Gynecol. 2002;15(3):135–43.PubMedCrossRefGoogle Scholar
  85. 85.
    Liu SL, Lebrun CM. Effect of oral contraceptives and hormone replacement therapy on bone mineral density in premenopausal and perimenopausal women: a systematic review. Br J Sports Med. 2006;40(1):11–24.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Grinspoon S, Baum H, Lee K, Anderson E, Herzog D, Klibanski A. Effects of short-term recombinant human insulin-like growth factor I administration on bone turnover in osteopenic women with anorexia nervosa. J Clin Endocrinol Metab. 1996;81(11):3864–70.PubMedGoogle Scholar
  87. 87.
    Gordon CM, Grace E, Emans SJ, Goodman E, Crawford MH, Leboff MS. Changes in bone turnover markers and menstrual function after short-term oral DHEA in young women with anorexia nervosa. J Bone Miner Res. 1999;14(1):136–45.PubMedCrossRefGoogle Scholar
  88. 88.
    Misra M, McGrane J, Miller KK, Goldstein MA, Ebrahimi S, Weigel T, et al. Effects of rhIGF-1 administration on surrogate markers of bone turnover in adolescents with anorexia nervosa. Bone. 2009;45(3):493–8.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Grinspoon S, Thomas L, Miller K, Herzog D, Klibanski A. Effects of recombinant human IGF-I and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metab. 2002;87(6):2883–91.PubMedCrossRefGoogle Scholar
  90. 90.
    Misra M, Katzman D, Miller KK, Mendes N, Snelgrove D, Russell M, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res. 2011;26(10):2430–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zumoff B, Walsh BT, Katz JL, Levin J, Rosenfeld RS, Kream J, et al. Subnormal plasma dehydroisoandrosterone to cortisol ratio in anorexia nervosa: a second hormonal parameter of ontogenic regression. J Clin Endocrinol Metab. 1983;56(4):668–72.PubMedCrossRefGoogle Scholar
  92. 92.
    Gordon CM, Glowacki J, LeBoff MS. DHEA and the skeleton (through the ages). Endocrine. 1999;11(1):1–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Miller KK, Grieco KA, Mulder J, Grinspoon S, Mickley D, Yehezkel R, et al. Effects of risedronate on bone density in anorexia nervosa. J Clin Endocrinol Metab. 2004;89(8):3903–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Golden NH, Iglesias EA, Jacobson MS, Carey D, Meyer W, Schebendach J, et al. Alendronate for the treatment of osteopenia in anorexia nervosa: a randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab. 2005;90(6):3179–85.CrossRefPubMedGoogle Scholar
  95. 95.
    Kawai M, Devlin MJ, Rosen CJ. Fat targets for skeletal health. Nat Rev Rheumatol. 2009;5(7):365–72.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kawai M, de Paula FJ, Rosen CJ. New insights into osteoporosis: the bone-fat connection. J Intern Med. 2012;272(4):317–29.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, et al. Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab. 2009;94(6):2129–36.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ecklund K, Vajapeyam S, Feldman HA, Buzney CD, Mulkern RV, Kleinman PK, et al. Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res. 2010;25(2):298–304.PubMedCrossRefGoogle Scholar
  99. 99.
    Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, et al. The IOC consensus statement: beyond the female athlete triad–relative energy deficiency in sport (RED-S). Br J Sports Med. 2014;48(7):491–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Wyshak G, Frisch RE, Albright TE, Albright NL, Schiff I, Witschi J. Nonalcoholic carbonated beverage consumption and bone fractures among women former college athletes. J Orthop Res. 1989;7(1):91–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Wyshak G, Frisch RE. Carbonated beverages, dietary calcium, the dietary calcium/phosphorus ratio, and bone fractures in girls and boys. J Adolesc Health. 1994;15(3):210–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Wyshak G. Teenaged girls, carbonated beverage consumption, and bone fractures. Arch Pediatr Adolesc Med. 2000;154(6):610–3.PubMedCrossRefGoogle Scholar
  103. 103.
    Treasure J, Claudino AM, Zucker N. Eating disorders. Lancet. 2010;375(9714):583–93.PubMedCrossRefGoogle Scholar
  104. 104.
    Pitts S, Blood E, Divasta A, Gordon CM. Percentage body fat by dual-energy X-ray absorptiometry is associated with menstrual recovery in adolescents with anorexia nervosa. J Adolesc Health. 2014;54(6):739–41.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Golden NH, Carlson JL. The pathophysiology of amenorrhea in the adolescent. Ann N Y Acad Sci. 2008;1135(1):163–78.PubMedCrossRefGoogle Scholar
  106. 106.
    Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984;66(3):397–402.PubMedCrossRefGoogle Scholar
  107. 107.
    Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O'Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. Oct 1998;20(2):111–2.PubMedCrossRefGoogle Scholar
  109. 109.
    Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O'Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348(12):1085–95.PubMedCrossRefGoogle Scholar
  110. 110.
    Sanghvi A, Redman LM, Martin CK, Ravussin E, Hall KD. Validation of an inexpensive and accurate mathematical method to measure long-term changes in free-living energy intake. Am J Clin Nutr. 2015;102(2):353–8.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Cypess AM, Haft CR, Laughlin MR, Hu HH. Brown fat in humans: consensus points and experimental guidelines. Cell Metab. 2014;20(3):408–15.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Singhal V, Maffazioli GD, Ackerman KE, Lee H, Elia EF, Woolley R, et al. Effect of chronic athletic activity on brown fat in young women. PLoS One. 2016;11(5):e0156353.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Alwani RA, Schmit Jongbloed LW, de Jong FH, van der Lely AJ, de Herder WW, Feelders RA. Differentiating between Cushing's disease and pseudo-Cushing's syndrome: comparison of four tests. Eur J Endocrinol. 2014;170(4):477–86.PubMedCrossRefGoogle Scholar
  114. 114.
    Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. The diagnosis of Cushing's syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.PubMedCrossRefGoogle Scholar
  116. 116.
    Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.PubMedCrossRefGoogle Scholar
  117. 117.
    Alberti KG, Zimmet P, Shaw J. Metabolic syndrome–a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80.PubMedCrossRefGoogle Scholar
  118. 118.
    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Curr Opin Cardiol. 2006;21(1):1–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents. Lancet. 2007;369(9579):2059–61.PubMedCrossRefGoogle Scholar
  120. 120.
    de Ferranti SD, Gauvreau K, Ludwig DS, Newburger JW, Rifai N. Inflammation and changes in metabolic syndrome abnormalities in US adolescents: findings from the 1988–1994 and 1999–2000 National Health and Nutrition Examination Surveys. Clin Chem. Jul 2006;52(7):1325–30.PubMedCrossRefGoogle Scholar
  121. 121.
    American Diabetes Association. Standards of medical care in diabetes–2009. Diabetes Care. 2009;32(Suppl 1):S13–61.PubMedCentralCrossRefGoogle Scholar
  122. 122.
    Copeland KC, Silverstein J, Moore KR, Prazar GE, Raymer T, Shiffman RN, et al. Management of newly diagnosed type 2 diabetes mellitus (T2DM) in children and adolescents. Pediatrics. 2013;131(2):364–82.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Narasimhan S, Weinstock RS. Youth-onset type 2 diabetes mellitus: lessons learned from the TODAY study. Mayo Clin Proc. 2014;89(6):806–16.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093–103.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Albertsson-Wikland K, Rosberg S, Karlberg J, Groth T. Analysis of 24-hour growth hormone profiles in healthy boys and girls of normal stature: relation to puberty. J Clin Endocrinol Metab. 1994;78(5):1195–201.PubMedGoogle Scholar
  126. 126.
    Iranmanesh A, Lizarralde G, Veldhuis JD. Age and relative adiposity are specific negative determinants of the frequency and amplitude of growth hormone (GH) secretory bursts and the half-life of endogenous GH in healthy men. J Clin Endocrinol Metab. 1991;73(5):1081–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Misra M, Bredella MA, Tsai P, Mendes N, Miller KK, Klibanski A. Lower growth hormone and higher cortisol are associated with greater visceral adiposity, intramyocellular lipids, and insulin resistance in overweight girls. Am J Physiol Endocrinol Metab. 2008;295(2):E385–92.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Utz AL, Yamamoto A, Hemphill L, Miller KK. Growth hormone deficiency by growth hormone releasing hormone-arginine testing criteria predicts increased cardiovascular risk markers in normal young overweight and obese women. J Clin Endocrinol Metab. 2008;93(7):2507–14.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Makimura H, Stanley T, Mun D, You SM, Grinspoon S. The effects of central adiposity on growth hormone (GH) response to GH-releasing hormone-arginine stimulation testing in men. J Clin Endocrinol Metab. 2008;93(11):4254–60.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Carmichael JD, Danoff A, Milani D, Roubenoff R, Lesser ML, Livote E, et al. GH peak response to GHRH-arginine: relationship to insulin resistance and other cardiovascular risk factors in a population of adults aged 50–90. Clin Endocrinol. 2006;65(2):169–77.CrossRefGoogle Scholar
  131. 131.
    Stanley TL, Levitsky LL, Grinspoon SK, Misra M. Effect of body mass index on peak growth hormone response to provocative testing in children with short stature. J Clin Endocrinol Metab. 2009;94(12):4875–81.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Lewitt MS, Dent MS, Hall K. The insulin-like growth factor system in obesity, insulin resistance and type 2 diabetes mellitus. J Clin Med. 2014;3(4):1561–74.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Cornford AS, Barkan AL, Horowitz JF. Rapid suppression of growth hormone concentration by overeating: potential mediation by hyperinsulinemia. J Clin Endocrinol Metab. 2011;96(3):824–30.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Frystyk J, Vestbo E, Skjaerbaek C, Mogensen CE, Orskov H. Free insulin-like growth factors in human obesity. Metabolism. 1995;44(10 Suppl 4):37–44.PubMedCrossRefGoogle Scholar
  135. 135.
    Gahete MD, Cordoba-Chacon J, Lin Q, Bruning JC, Kahn CR, Castano JP, et al. Insulin and IGF-I inhibit GH synthesis and release in vitro and in vivo by separate mechanisms. Endocrinology. 2013;154(7):2410–20.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Casanueva FF, Villanueva L, Dieguez C, Diaz Y, Cabranes JA, Szoke B, et al. Free fatty acids block growth hormone (GH) releasing hormone-stimulated GH secretion in man directly at the pituitary. J Clin Endocrinol Metab. 1987;65(4):634–42.PubMedCrossRefGoogle Scholar
  137. 137.
    Cordido F, Peino R, Penalva A, Alvarez CV, Casanueva FF, Dieguez C. Impaired growth hormone secretion in obese subjects is partially reversed by acipimox-mediated plasma free fatty acid depression. J Clin Endocrinol Metab. 1996;81(3):914–8.PubMedGoogle Scholar
  138. 138.
    Maccario M, Procopio M, Grottoli S, Oleandri SE, Razzore P, Camanni F, et al. In obesity the somatotrope response to either growth hormone-releasing hormone or arginine is inhibited by somatostatin or pirenzepine but not by glucose. J Clin Endocrinol Metab. 1995;80(12):3774–8.PubMedGoogle Scholar
  139. 139.
    Pena-Bello L, Pertega-Diaz S, Outeirino-Blanco E, Garcia-Buela J, Tovar S, Sangiao-Alvarellos S, et al. Effect of oral glucose administration on rebound growth hormone release in normal and obese women: the role of adiposity, insulin sensitivity and ghrelin. PLoS One. 2015;10(3):e0121087.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Rasmussen MH, Hvidberg A, Juul A, Main KM, Gotfredsen A, Skakkebaek NE, et al. Massive weight loss restores 24-hour growth hormone release profiles and serum insulin-like growth factor-I levels in obese subjects. J Clin Endocrinol Metab. 1995;80(4):1407–15.PubMedGoogle Scholar
  141. 141.
    Berryman DE, Glad CA, List EO, Johannsson G. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2013;9(6):346–56.PubMedCrossRefGoogle Scholar
  142. 142.
    Agha A, Monson JP. Modulation of glucocorticoid metabolism by the growth hormone - IGF-1 axis. Clin Endocrinol. 2007;66(4):459–65.Google Scholar
  143. 143.
    Ruminska M, Witkowska-Sedek E, Majcher A, Pyrzak B. Thyroid function in obese children and adolescents and its association with anthropometric and metabolic parameters. Adv Exp Med Biol. 2016;912:33–41.PubMedCrossRefGoogle Scholar
  144. 144.
    Zawadski JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, Givens JR, Haseltine FP, Merriam GR, editors. Polycystic ovary syndrome. Boston: Blackwell Scientific Publication; 1992. p. 377–84.Google Scholar
  145. 145.
    Dewailly D, Lujan ME, Carmina E, Cedars MI, Laven J, Norman RJ, et al. Definition and significance of polycystic ovarian morphology: a task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum Reprod Update. 2014;20(3):334–52.PubMedCrossRefGoogle Scholar
  146. 146.
    Ibanez L, Potau N, Carrascosa A. Insulin resistance, premature adrenarche, and a risk of the Polycystic Ovary Syndrome (PCOS). Trends Endocrinol Metab. 1998;9(2):72–7.PubMedCrossRefGoogle Scholar
  147. 147.
    Lee JM, Appugliese D, Kaciroti N, Corwyn RF, Bradley RH, Lumeng JC. Weight status in young girls and the onset of puberty. Pediatrics. 2007;119(3):e624–30.PubMedCrossRefGoogle Scholar
  148. 148.
    Kaplowitz PB. Link between body fat and the timing of puberty. Pediatrics. 2008;121(Suppl 3):S208–17.PubMedCrossRefGoogle Scholar
  149. 149.
    Burt Solorzano CM, McCartney CR. Obesity and the pubertal transition in girls and boys. Reproduction. 2010;140(3):399–410.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Tomova A, Robeva R, Kumanov P. Influence of the body weight on the onset and progression of puberty in boys. J Pediatr Endocrinol Metab. 2015;28(7–8):859–65.PubMedGoogle Scholar
  151. 151.
    Misra M, Klibanski A. Anorexia nervosa, obesity and bone metabolism. Pediatr Endocrinol Rev. 2013;11(1):21–33.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Pollock NK, Laing EM, Hamrick MW, Baile CA, Hall DB, Lewis RD. Bone and fat relationships in postadolescent black females: a pQCT study. Osteoporos Int. 2011;22(2):655–65.PubMedCrossRefGoogle Scholar
  153. 153.
    Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res. 2005;20(12):2090–6.PubMedCrossRefGoogle Scholar
  154. 154.
    Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2(1):35–43.PubMedCrossRefGoogle Scholar
  155. 155.
    Walsh JS, Evans AL, Bowles S, Naylor KE, Jones KS, Schoenmakers I, et al. Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. Am J Clin Nutr. 2016;103(6):1465–71.PubMedCrossRefGoogle Scholar
  156. 156.
    Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, et al. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab. 2010;95(3):1247–55.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, et al. Determinants of bone mineral density in obese premenopausal women. Bone. 2011;48(4):748–54.PubMedCrossRefGoogle Scholar
  158. 158.
    Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J. Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. JAMA. 2005;293(23):2873–83.PubMedCrossRefGoogle Scholar
  159. 159.
    Inge TH, Courcoulas AP, Jenkins TM, Michalsky MP, Helmrath MA, Brandt ML, et al. Weight loss and health status 3 years after bariatric surgery in adolescents. N Engl J Med. 2016;374(2):113–23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of EndocrinologyBoston Children’s HospitalBostonUSA
  2. 2.Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiUSA
  3. 3.Division of Adolescent and Transition MedicineCincinnati Children’s Hospital CenterCincinnatiUSA

Personalised recommendations